Spillmann L
Neurologische Universitätsklinik mit Abteilung für Neurophysiologie, Freiburg, Germany.
Perception. 1994;23(6):691-708. doi: 10.1068/p230691.
Psychophysical research on the Hermann grid illusion is reviewed and possible neurophysiological mechanisms are discussed. The illusion is most plausibly explained by lateral inhibition within the concentric receptive fields of retinal and/or geniculate ganglion cells, with contributions by the binocular orientation-specific cortical cells. Results may be summarized as follows: (a) For a strong Hermann grid illusion to be seen bar width must be matched to the mean size of receptive-field centers at any given retinal eccentricity. (b) With the use of this rationale, the diameter of foveal perceptive-field centers (the psychophysical correlate of receptive-field centers) has been found to be in the order of 4-5 min arc and that of total fields (centers plus surrounds) 18 min arc. These small diameters explain why the illusion tends to be absent in foveal vision. (c) With increasing distance from the fovea, perceptive-field centers increase to 1.7 deg at 15 deg eccentricity and then to 3.4 deg at 60 deg eccentricity. This doubling in diameter agrees with the change in size of retinal receptive-field centers in the monkey. (d) The Hermann grid illusion is diminished with dark adaptation. This finding is consistent with the reduction of the center-surround antagonism in retinal receptive fields. (e) The illusion is also weakened when the grid is presented diagonally, which suggests a contribution by the orientation-sensitive cells in the lateral geniculate nucleus and visual cortex. (f) Strong induction effects, similar to the bright and dark spots in the Hermann grid illusion, may be elicited by grids made of various shades of grey; and by grids varying only in chroma or hue. Not accounted for are: the illusory spots occurring in an outline grid ie with hollow squares, and the absence of an illusion when extra bars are added to the grid. Alternative explanations are discussed for the spurious lines connecting the illusory spots along the diagonals and the fuzzy dark bands traversing the rhombi in modified Hermann grids.
本文回顾了关于赫尔曼栅格错觉的心理物理学研究,并讨论了可能的神经生理机制。最合理的解释是,视网膜和/或膝状神经节细胞的同心感受野内的侧向抑制,以及双眼方向特异性皮层细胞的作用导致了这种错觉。结果可总结如下:(a) 要看到强烈的赫尔曼栅格错觉,条带宽度必须与任何给定视网膜离心率下感受野中心的平均大小相匹配。(b) 根据这一原理,已发现中央凹感受野中心的直径(感受野中心的心理物理学对应物)约为4 - 5分视角,而整个视野(中心加周边)的直径为18分视角。这些小直径解释了为什么错觉在中央凹视觉中往往不存在。(c) 随着离中央凹距离的增加,感受野中心在15度离心率时增加到1.7度,然后在60度离心率时增加到3.4度。直径的这种翻倍与猴子视网膜感受野中心大小的变化一致。(d) 赫尔曼栅格错觉在暗适应时会减弱。这一发现与视网膜感受野中中心 - 周边拮抗作用的减弱相一致。(e) 当栅格以对角线形式呈现时,错觉也会减弱,这表明外侧膝状体核和视觉皮层中方向敏感细胞起到了作用。(f) 由各种灰度的网格以及仅在色度或色调上变化的网格可能会引发类似于赫尔曼栅格错觉中的亮斑和暗斑的强烈诱导效应。未得到解释的是:轮廓网格(即带有空心方块)中出现的虚幻斑点,以及在网格中添加额外条带时错觉的消失。对于连接虚幻斑点的对角线伪线以及修改后的赫尔曼栅格中穿过菱形的模糊暗带,讨论了其他解释。