Suppr超能文献

基于 ImageNet 训练的深度神经网络对闪烁网格表现出类似幻觉的反应。

ImageNet-trained deep neural networks exhibit illusion-like response to the Scintillating grid.

机构信息

Mather House, Harvard University, Cambridge, MA, USA.

Department of Neurobiology, Weizmann Institute of Science, Rehovot, PA, Israel.

出版信息

J Vis. 2021 Oct 5;21(11):15. doi: 10.1167/jov.21.11.15.

Abstract

Deep neural network (DNN) models for computer vision are capable of human-level object recognition. Consequently, similarities between DNN and human vision are of interest. Here, we characterize DNN representations of Scintillating grid visual illusion images in which white disks are perceived to be partially black. Specifically, we use VGG-19 and ResNet-101 DNN models that were trained for image classification and consider the representational dissimilarity ((L^1) distance in the penultimate layer) between pairs of images: one with white Scintillating grid disks and the other with disks of decreasing luminance levels. Results showed a nonmonotonic relation, such that decreasing disk luminance led to an increase and subsequently a decrease in representational dissimilarity. That is, the Scintillating grid image with white disks was closer, in terms of the representation, to images with black disks than images with gray disks. In control nonillusion images, such nonmonotonicity was rare. These results suggest that nonmonotonicity in a deep computational representation is a potential test for illusion-like response geometry in DNN models.

摘要

用于计算机视觉的深度神经网络 (DNN) 模型能够达到人类水平的物体识别。因此,DNN 与人类视觉之间的相似性引起了人们的兴趣。在这里,我们描述了 DNN 对闪烁栅格视觉错觉图像的表示,在这些图像中,白色圆盘被感知为部分黑色。具体来说,我们使用了经过图像分类训练的 VGG-19 和 ResNet-101 DNN 模型,并考虑了图像对之间的表示差异(倒数第二层的 (L^1) 距离):一个是具有白色闪烁栅格圆盘的图像,另一个是具有逐渐降低亮度级别的圆盘的图像。结果显示出一种非单调关系,即随着圆盘亮度的降低,代表差异先增加后减少。也就是说,与具有灰色圆盘的图像相比,具有白色圆盘的闪烁栅格图像在表示上更接近具有黑色圆盘的图像。在非错觉控制图像中,这种非单调性很少见。这些结果表明,深度计算表示中的非单调性是 DNN 模型中类似错觉的响应几何的潜在测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f08/8543405/4f01c0492748/jovi-21-11-15-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验