Suppr超能文献

交感神经释放ATP和去甲肾上腺素的量子释放的时空模式:对神经肌肉传递的影响。

Spatiotemporal pattern of quantal release of ATP and noradrenaline from sympathetic nerves: consequences for neuromuscular transmission.

作者信息

Stjärne L, Astrand P, Bao J X, Gonon F, Msghina M, Stjärne E

机构信息

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Adv Second Messenger Phosphoprotein Res. 1994;29:461-96. doi: 10.1016/s1040-7952(06)80030-3.

Abstract

The recent explosive development in research concerning the fundamental mechanisms of synaptic transmission helps put the present paper in context. It is now evident that not all transmitter vesicles in a nerve terminal, not even all those docked at its active zones, are immediately available for release (36). We watch, fascinated, the unraveling of the amazingly complex cellular mechanisms and molecular machinery that determine whether or not a vesicle is "exocytosis-competent" (77,78,39,79). Studies on quantal release in different systems show that neurons are fundamentally similar in one respect: that transmitter release from individual active zones is monoquantal (2). But they also show that active zones in different neurons differ drastically in the probability of monoquantal release and in the number of quanta immediately available for release (3). This implies that one should not extrapolate directly from transmitter release in one set of presynaptic terminals (e.g., in neuromuscular endplate or squid giant synapse) to that in other nerve terminals, especially if they have a very different morphology. As shown here, one should not even extrapolate from transmitter release in sympathetic nerves in one tissue (e.g., rat tail artery) to that in other tissues or species (e.g., mouse vas deferens). It is noteworthy that most studies of quantal release are based on electrophysiological analysis and therefore deal with release of fast, ionotropic transmitters from small synaptic vesicles at the active zones, especially in neurons in which these events may be examined with high resolution (49,48,46,33,32). Such data are useful as general models of the release of both fast and slow transmitters from small synaptic vesicles at active zones in other systems, provided that these transmitters are released in parallel, as are apparently ATP and NA in sympathetic nerves. They tell us little or nothing, however, about the release of transmitters (e.g., neuropeptides) from the large vesicles, nor about the spatiotemporal pattern of monoquantal release from small synaptic vesicles in the many neurons that have boutons-en-passent terminals. They show that the time course of effector responses to fast, rapidly inactivated transmitters such as ACh or ATP is necessarily release related. But they do not even address the possibility that the effector responses to slow transmitters such as NA, co-released from the same terminals, may obey completely different rules and perhaps rather be clearance related (7).(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

近期有关突触传递基本机制的研究取得了爆炸性进展,这有助于将本文置于相应的背景之中。现在很明显,神经末梢中的并非所有递质囊泡,甚至并非所有停靠在其活性区的囊泡,都可立即用于释放(36)。我们饶有兴趣地关注着那些决定囊泡是否“具备胞吐能力”的极其复杂的细胞机制和分子机器的逐步揭示(77,78,39,79)。对不同系统中量子释放的研究表明,神经元在一个方面基本相似:即从单个活性区释放递质是单量子的(2)。但这些研究也表明,不同神经元的活性区在单量子释放概率以及可立即用于释放的量子数量方面存在巨大差异(3)。这意味着,不应直接从一组突触前末梢(例如神经肌肉终板或枪乌贼巨大突触)的递质释放情况推断其他神经末梢的情况,尤其是当它们具有非常不同的形态时。如此处所示,甚至不应从一种组织(例如大鼠尾动脉)中交感神经的递质释放情况推断其他组织或物种(例如小鼠输精管)中的情况。值得注意的是,大多数量子释放研究基于电生理分析,因此涉及从活性区的小突触囊泡释放快速、离子型递质,特别是在那些可以高分辨率检测这些事件的神经元中(49,48,46,33,32)。只要这些递质如交感神经中的ATP和去甲肾上腺素(NA)一样并行释放,此类数据作为其他系统中活性区小突触囊泡释放快速和慢速递质的一般模型是有用的。然而,它们对于大囊泡中递质(例如神经肽)的释放,或者对于具有串珠状终末的众多神经元中小突触囊泡单量子释放的时空模式几乎或根本没有提供任何信息。它们表明效应器对快速、快速失活递质(如乙酰胆碱或ATP)的反应的时间进程必然与释放相关。但它们甚至没有探讨这样一种可能性,即效应器对从同一终末共同释放的慢速递质(如NA)的反应可能遵循完全不同的规则,或许更与清除相关(7)。(摘要截选至400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验