Vos R, Engelborghs Y, Izard J, Baty D
Laboratory for Chemical and Biological Dynamics, University of Leuven, Belgium.
Biochemistry. 1995 Feb 7;34(5):1734-43. doi: 10.1021/bi00005a030.
We have identified the steady-state and time-resolved fluorescence of the three tryptophan residues (Trp-86, Trp-130, and Trp-140) of the pore-forming domain of colicin A using site-directed mutagenesis in order to construct two- and one-tryptophan-containing mutant proteins. Fluorescence lifetimes were measured via multifrequency phase fluorometry. The fluorescence of the pore-forming domain of colicin A is dominated by Trp-140 which contributes almost 53% to the fluorescence intensity. Mutation of Trp-140 results in a decrease in fluorescence quantum yield and average lifetime. Colicin A wild-type and all mutant proteins display multiple lifetimes which belong to three different lifetime classes: 0.38-0.57 ns for tau 1, 1.6-1.87 ns for tau 2, and 3.6-4.41 ns for tau 3 at pH 5. At pH 7, the three classes are 0.64-0.89 ns for tau 1, 2.01-2.19 ns for tau 2, and 4.23-4.94 ns for tau 3. This pH effect influences all the lifetimes and must be attributed to a general conformational change. In wild-type colicin A, tau 3 originates mainly from Trp-140 while Trp-86 and Trp-130 both provide a major contribution to tau 2. The pH dependence of the fluorescence intensity gives rise to a pKa of 5.2. The different lifetime components of two of the three single-tryptophan-containing mutants show different quenching properties toward acrylamide, indicating that each lifetime is coupled to a different microenvironment. The linear combination of the lifetimes of the single tryptophans into pairs simulates very well the behavior of the two-tryptophan-containing mutants except for one, the mutant containing Trp-86 and Trp-130. The lifetimes of the wild-type protein can only be obtained by the linear combination of the lifetimes from the mutant containing the tryptophan pair Trp-86/Trp-130 and the mutant containing Trp-140. Mutual energy transfer between Trp-86 and Trp-130 is assumed to be the explanation of this deviation since the mutant proteins display no structural or dynamic aberrances. The calculated energy transfer efficiency amounts to 65% for energy transfer from Trp-86 to Trp-130 and 21% for the reverse transfer and is in agreement with our measurements.
我们利用定点诱变技术鉴定了大肠杆菌素A成孔结构域中三个色氨酸残基(Trp-86、Trp-130和Trp-140)的稳态荧光和时间分辨荧光,以构建含两个和一个色氨酸的突变蛋白。通过多频相荧光法测量荧光寿命。大肠杆菌素A成孔结构域的荧光主要由Trp-140主导,其对荧光强度的贡献几乎达到53%。Trp-140的突变导致荧光量子产率和平均寿命降低。大肠杆菌素A野生型和所有突变蛋白均表现出多个寿命,这些寿命属于三个不同的寿命类别:在pH 5时,τ1为0.38 - 0.57 ns,τ2为1.6 - 1.87 ns,τ3为3.6 - 4.41 ns。在pH 7时,这三个类别分别为:τ1为0.64 - 0.89 ns,τ2为2.01 - 2.19 ns,τ3为4.23 - 4.94 ns。这种pH效应影响所有寿命,且必定归因于一般的构象变化。在野生型大肠杆菌素A中,τ3主要源于Trp-140而Trp-86和Trp-130对τ2均有主要贡献。荧光强度的pH依赖性产生了一个5.2的pKa值。三个含单个色氨酸的突变体中的两个,其不同的寿命组分对丙烯酰胺表现出不同的猝灭特性,这表明每个寿命都与不同的微环境相关联。单个色氨酸寿命的线性组合成对,除了一个含Trp-86和Trp-130的突变体之外,能很好地模拟含两个色氨酸的突变体的行为。野生型蛋白的寿命只能通过含色氨酸对Trp-86/Trp-130的突变体和含Trp-140的突变体的寿命线性组合得到。由于突变蛋白未表现出结构或动力学异常,因此假设Trp-86和Trp-130之间的相互能量转移是这种偏差的原因。从Trp-86到Trp-130的能量转移计算效率为65%,反向转移为21%,这与我们的测量结果一致。