Witmer M R, Palmieri-Young D, Villafranca J J
Department of Chemistry, Pennsylvania State University, University Park 16802.
Protein Sci. 1994 Oct;3(10):1746-59. doi: 10.1002/pro.5560031015.
The contribution of metal ion ligand type and charge to catalysis and regulation at the lower affinity metal ion site (n2 site) of Escherichia coli glutamine synthetase (GS) was tested by mutagenesis and kinetic analysis. The 2 glutamate residues at the n2 site, E129 and E357, were changed to E129D, E129H, E357H, E357Q, and E357D, representing conservative and nonconservative alterations. Unadenylylated and fully adenylylated enzyme forms were studied. The Mn(2+)-KD values, UV-cis and fluorescence emission properties were similar for all mutants versus WTGS, except E129H. For kinetic determinations with both Mn2+ and Mg2+, nonconservative mutants (E357H, E129H, E357Q) showed lower biosynthetic activities than conservative mutants (E129D, E357D). Relative to WTGS, all the unadenylylated Mn(2+)-activated enzymes showed reduced kcat/Km values for ATP (> 7-fold) and for glutamate (> 10-fold). Of the unadenylylated Mg(2+)-activated enzymes, only E129D showed kinetic parameters competitive with WTGS, and adenylylated E129D was a 20-fold better catalyst than WTGS. We propose the n2-site metal ion activates ADP for departure in the phosphorylation of glutamate by ATP to generate gamma-glutamyl phosphate. Alteration of the charge density at this metal ion alters the transition-state energy for phosphoryl group transfer and may affect ATP binding and/or ADP release. Thus, the steady-state kinetic data suggest that modifying the charge density increases the transition-state energies for chemical steps. Importantly, the data demonstrate that each ligand position has a specialized spatial environment and the charge of the ligand modulates the catalytic steps occurring at the metal ion. The data are discussed in the context of the known X-ray structures of GS.
通过诱变和动力学分析,测试了金属离子配体类型和电荷对大肠杆菌谷氨酰胺合成酶(GS)低亲和力金属离子位点(n2位点)催化和调节的作用。n2位点的2个谷氨酸残基E129和E357分别变为E129D、E129H、E357H、E357Q和E357D,代表保守和非保守改变。研究了未腺苷酸化和完全腺苷酸化的酶形式。除E129H外,所有突变体与野生型GS相比,Mn(2+)-KD值、紫外顺式和荧光发射特性相似。对于Mn2+和Mg2+的动力学测定,非保守突变体(E357H、E129H、E357Q)的生物合成活性低于保守突变体(E129D、E357D)。相对于野生型GS,所有未腺苷酸化的Mn(2+)-激活酶对ATP(>7倍)和谷氨酸(>10倍)的kcat/Km值均降低。在未腺苷酸化的Mg(2+)-激活酶中,只有E129D的动力学参数与野生型GS具有竞争力,腺苷酸化的E129D作为催化剂比野生型GS好20倍。我们提出,n2位点的金属离子激活ADP以使其从ATP对谷氨酸的磷酸化中脱离,从而生成γ-谷氨酰磷酸。该金属离子处电荷密度的改变会改变磷酰基转移的过渡态能量,并可能影响ATP结合和/或ADP释放。因此,稳态动力学数据表明,改变电荷密度会增加化学步骤的过渡态能量。重要的是,数据表明每个配体位置都有一个特殊的空间环境,配体的电荷调节在金属离子处发生的催化步骤。将结合已知的GS X射线结构对数据进行讨论。