Suppr超能文献

通过自去卷积确定光谱线形。

Spectral lineshape determination by self-deconvolution.

作者信息

Maudsley A A

机构信息

Department of Radiology, University of California San Francisco, DVA Medical Center 94121.

出版信息

J Magn Reson B. 1995 Jan;106(1):47-57. doi: 10.1006/jmrb.1995.1007.

Abstract

A data-processing method is described for the determination of spectral lineshapes using deconvolution of the data with an initial estimate of the same spectrum, referred to as self-deconvolution. The method is demonstrated using computer-simulation studies and experimental data, and is shown to accurately determine amplitude and phase lineshape distortions which may be caused by field inhomogeneity and gradient eddy-current effects. The results indicate that the method is robust in the presence of noise and errors in the initial spectral estimate. Once the spectral lineshape is determined it can be incorporated into a parametric spectral-analysis procedure, thereby reducing the number of parameters to be determined and improving the accuracy of the fit. A proposed application of the method is for spatially resolved in vivo NMR studies where local susceptibility effects and gradient eddy-current effects cause significant deviation of the spectral lineshape from a Lorentzian lineshape.

摘要

描述了一种数据处理方法,用于通过将数据与同一光谱的初始估计值进行去卷积来确定光谱线形,这被称为自去卷积。使用计算机模拟研究和实验数据对该方法进行了演示,结果表明该方法能够准确确定可能由场不均匀性和梯度涡流效应引起的幅度和相位线形失真。结果表明,该方法在初始光谱估计存在噪声和误差的情况下具有鲁棒性。一旦确定了光谱线形,就可以将其纳入参数光谱分析程序中,从而减少待确定的参数数量并提高拟合精度。该方法的一个拟议应用是用于空间分辨的体内核磁共振研究,其中局部磁化率效应和梯度涡流效应会导致光谱线形与洛伦兹线形有显著偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验