Salim M A, Case C L, Sade R M, Watson D C, Alpert B S, DiSessa T G
Division of Pediatric Cardiology, University of Tennessee, Memphis.
J Am Coll Cardiol. 1995 Mar 1;25(3):735-8. doi: 10.1016/0735-1097(94)00441-R.
This study attempted to provide a formula for calculation of the pulmonary/systemic flow ratio in children after bidirectional cavopulmonary anastomosis.
With the bidirectional cavopulmonary anastomosis, only the superior vena cava blood is oxygenated by the lungs. The inferior vena cava flow recirculates into the systemic circulation. The ratio of these flows will determine systemic arterial saturation.
According to the Fick principle, 1) Systemic cardiac output (liters/min) = Pulmonary venous flow + Inferior vena cava flow; 2) Systemic blood oxygen transport (ml/min) = Pulmonary venous blood oxygen transport + Inferior vena cava blood oxygen transport. By substituting the first equation into the second, Pulmonary/systemic flow ratio = (Systemic saturation - Inferior vena cava saturation)/(Pulmonary venous saturation - Inferior vena cava saturation).
We applied the third formula to data obtained from 34 catheterizations in 29 patients after bidirectional cavopulmonary anastomosis. Mean [+/- SD] age at operation was 1.70 +/- 1.43 years, and mean age at catheterization was 2.95 +/- 1.65 years. The pulmonary/systemic flow ratio calculated for all 29 patients was 0.58 +/- 0.09. Of 17 patients with aortography, 10 had systemic to pulmonary collateral vessels. Patients with collateral vessels had a significantly higher pulmonary/systemic flow ratio (0.61 +/- 0.07 vs. 0.53 +/- 0.07, respectively, p < 0.02) and systemic saturation (88 +/- 4% vs. 82 +/- 4%, respectively, p < 0.002) than those without collateral vessels. The pulmonary/systemic flow ratio in those patients with no collateral vessels was similar to the previously reported echocardiographically derived superior vena cava/systemic flow ratio in normal children.
The pulmonary/systemic flow ratio after bidirectional cavopulmonary anastomosis can be calculated. Pulmonary blood flow in these patients determines systemic saturation and accounts for the majority of venous return in young children.
本研究试图提供一种用于计算双向腔肺吻合术后儿童肺循环/体循环血流比值的公式。
采用双向腔肺吻合术时,只有上腔静脉血由肺进行氧合。下腔静脉血流则再循环进入体循环。这些血流的比值将决定体循环动脉血氧饱和度。
根据菲克原理,1)体循环心输出量(升/分钟)=肺静脉血流量+下腔静脉血流量;2)体循环血氧输送量(毫升/分钟)=肺静脉血氧输送量+下腔静脉血氧输送量。将第一个等式代入第二个等式,肺循环/体循环血流比值=(体循环血氧饱和度-下腔静脉血氧饱和度)/(肺静脉血氧饱和度-下腔静脉血氧饱和度)。
我们将第三个公式应用于29例接受双向腔肺吻合术患者的34次心导管检查所获得的数据。手术时的平均[±标准差]年龄为1.70±1.43岁,心导管检查时的平均年龄为2.95±1.65岁。为所有29例患者计算的肺循环/体循环血流比值为0.58±0.09。在17例行主动脉造影的患者中,10例存在体循环至肺循环的侧支血管。有侧支血管的患者比没有侧支血管的患者具有显著更高的肺循环/体循环血流比值(分别为0.61±0.07对0.53±0.07,p<0.02)和体循环血氧饱和度(分别为88±4%对82±4%,p<0.002)。无侧支血管患者的肺循环/体循环血流比值与先前报道的正常儿童经超声心动图得出的上腔静脉/体循环血流比值相似。
双向腔肺吻合术后的肺循环/体循环血流比值可以计算。这些患者的肺血流量决定体循环血氧饱和度,并占幼儿静脉回流的大部分。