Suppr超能文献

Reductive microbial conversion of anthracycline antibiotics.

作者信息

Marshall V P, Reisender E A, Reineke L M, Johnson J H, Wiley P F

出版信息

Biochemistry. 1976 Sep 21;15(19):4139-45. doi: 10.1021/bi00664a001.

Abstract

Reductive conversion of several anthracycline glycosides to their 7-deoxyaglycones occurs during their microaerophilic incubation with strains of Aeromonas hydrophila, Citrobacter freundii, and Escherichia coli. Further, extracts of microaerophilically grown A. hydrophilia catalyze DPNH-dependent reductive conversion of the same compounds. Anthracycline substrates cleaved by both whole cells and by the cell-free system include steffimycin, steffimycin B, nogalamycin, cinerubin A, and daunomycin. Investigation of glycoside cleavage as a function of both time and anthracycline concentration demonstrated the superiority of A. hydrophila over C. freundii and E. coli in regard to reaction rate and efficiency of conversion. Interestingly, some degree of anaerobicity was required for glycoside cleavage by all three organisms. Evidence supporting 7-deoxyaglycone formation via direct reductive cleavage, as opposed to a multienzyme-catalyzed process involving hydrolysis followed by dehydration and reduction, includes the following. Equilibrium mixtures of glycoside substrate and 7-deoxyaglycone product prepared using both whole cells and their extracts display no anthracycline hydrolysis products. Further, authentic steffimycinone (aglycone), the expected product of hydrolytic sugar cleavage of steffimycin, was shown to be converted to 7-deoxysteffimycinone (7-deoxyaglycone) at a rate slower than steffimycin. These data indicate that, if steffimycinone were present as an unbound metabolic intermediate, it should have been visible in the equilibrium mixture, but none was detected.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验