Suppr超能文献

Reductive microbial conversion of anthracycline antibiotics.

作者信息

Marshall V P, Reisender E A, Reineke L M, Johnson J H, Wiley P F

出版信息

Biochemistry. 1976 Sep 21;15(19):4139-45. doi: 10.1021/bi00664a001.

Abstract

Reductive conversion of several anthracycline glycosides to their 7-deoxyaglycones occurs during their microaerophilic incubation with strains of Aeromonas hydrophila, Citrobacter freundii, and Escherichia coli. Further, extracts of microaerophilically grown A. hydrophilia catalyze DPNH-dependent reductive conversion of the same compounds. Anthracycline substrates cleaved by both whole cells and by the cell-free system include steffimycin, steffimycin B, nogalamycin, cinerubin A, and daunomycin. Investigation of glycoside cleavage as a function of both time and anthracycline concentration demonstrated the superiority of A. hydrophila over C. freundii and E. coli in regard to reaction rate and efficiency of conversion. Interestingly, some degree of anaerobicity was required for glycoside cleavage by all three organisms. Evidence supporting 7-deoxyaglycone formation via direct reductive cleavage, as opposed to a multienzyme-catalyzed process involving hydrolysis followed by dehydration and reduction, includes the following. Equilibrium mixtures of glycoside substrate and 7-deoxyaglycone product prepared using both whole cells and their extracts display no anthracycline hydrolysis products. Further, authentic steffimycinone (aglycone), the expected product of hydrolytic sugar cleavage of steffimycin, was shown to be converted to 7-deoxysteffimycinone (7-deoxyaglycone) at a rate slower than steffimycin. These data indicate that, if steffimycinone were present as an unbound metabolic intermediate, it should have been visible in the equilibrium mixture, but none was detected.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验