Kizer N L, Lewis B, Stanton B A
Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755.
Am J Physiol. 1995 Feb;268(2 Pt 2):F347-55. doi: 10.1152/ajprenal.1995.268.2.F347.
The initial segment of the inner medullary collecting duct (IMCDi) absorbs Na+ by an electrogenic mechanism and plays an important role in regulating the composition and volume of the urine. The purpose of the present study was to establish a permanent cell line derived from the IMCDi, which has the ion transport properties of the IMCDi in vivo. To this end, we isolated IMCD cells from the IMCDi of a mouse, Tg(SV40E) Bri 7, transgenic for the early region of SV40 (large T antigen) and established a permanent cell line, mIMCD-K2, by clonal dilution. mIMCD-K2 cells retain many differentiated characteristics of the IMCDi, including amiloride-sensitive electrogenic Na+ absorption stimulated by nanomolar concentrations of aldosterone. Aldosterone (1.5 x 10(-6) M) increased Na+ absorption from 0.2 +/- 0.1 to 4.6 +/- 1.7 microA/cm2. In addition, the cells secrete Cl- by an electrogenic mechanism at a rate of 0.5 +/- 0.1 microA/cm2. We propose that IMCDi cells either absorb or secrete NaCl depending on NaCl homeostasis. The mIMCD-K2 cell line should be useful for studying the cellular mechanisms responsible for electrogenic Na+ and Cl- transport in the IMCDi.