Hasegawa K, Turner C H, Burr D B
Department of Anatomy, Indiana University School of Medicine, Indianapolis 46202.
Calcif Tissue Int. 1994 Nov;55(5):381-6. doi: 10.1007/BF00299319.
It has long been thought that collagen fibers within the bone matrix are deposited in an aligned pattern that channels mineral growth. If this model of bone structure is correct, both organic and inorganic phases of bone should have similar elastic anisotropy. Using an acoustic microscope, we measured longitudinal and transverse acoustic velocities of cortical specimens taken from 10 dog femurs before and after removal of either the mineral (using 10% EDTA) or collagen phases (using 7% sodium hypochlorite) and calculated longitudinal (CL) and transverse (CT) elastic coefficients. The anisotropy ratio (CL/CT) decreased significantly after demineralization (1.61 before versus 1.06 after, P < 0.0001, paired t-test). However, there was no significant change after decollagenization (1.51 before versus 1.48 after, P = 0.617, paired t-test). We conclude that the orientation of mineral crystals is the primary determinant of bone anisotropy, and the collagen matrix within osteonal bone has little directional orientation.
长期以来,人们一直认为骨基质中的胶原纤维以一种排列模式沉积,引导矿物质生长。如果这种骨结构模型是正确的,那么骨的有机相和无机相应该具有相似的弹性各向异性。我们使用声学显微镜测量了取自10只狗股骨的皮质标本在去除矿物质(使用10%乙二胺四乙酸)或胶原相(使用7%次氯酸钠)之前和之后的纵向和横向声速,并计算了纵向(CL)和横向(CT)弹性系数。脱矿后各向异性比(CL/CT)显著降低(脱矿前为1.61,脱矿后为1.06,配对t检验,P<0.0001)。然而,脱胶原后没有显著变化(脱胶原前为1.51,脱胶原后为1.48,配对t检验,P = 0.617)。我们得出结论,矿物晶体的取向是骨各向异性的主要决定因素,骨单位骨内的胶原基质几乎没有定向取向。