Maraveyas A, Myers M, Stafford N, Rowlinson-Busza G, Stewart J S, Epenetos A A
Department of Clinical Oncology, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom.
Cancer Res. 1995 Mar 1;55(5):1020-7.
We propose to use radiolabeled antibodies in combination with external beam radiotherapy to improve locoregional control of head and neck cancer. In this case radiation toxicity to mucosa may become a dose-limiting factor and a calculation of the possible compensatory decrease to the external beam radiotherapy would be needed. For this purpose, the following theoretical phantom of a representative organ of this anatomic region, the larynx, was reconstructed and local dosimetric data were derived for a selection of beta-emitting isotopes. The phantom was reconstructed as cylindrical concentric tubes using the established values of an outer diameter of 38 mm and a height of 44 mm. Published mean adult larynx weight (28 g) and cartilage weight (14.7 g) were used. Mean mucosa weight from 5 mucosa samples of our patients was calculated to be 2.0 +/- 0.4 (SD) g. The remaining weight was apportioned to a fat/muscle compartment (11.3 g). The specific gravity of cartilage (1.10 g/cm3), mucosa (1.04 g/cm3), and fat/muscle (1.04 g/cm3) were used to cross-check the volume/mass disparity of the theoretical tubular tissue shells. The established maximum glottic diameter of 24 mm was used to calculate the central air column volume. Mean laryngeal tumor volume from 8 representative laryngeal tumors was 4.4 +/- 3.1 cm3. Tissue compartment thickness was 660 microns for mucosa, 3100 microns for muscle/fat, and 3320 microns for cartilage. These values allowed the calculation of dose absorbed fractions for a number of theoretical radioimmunoconjugates by extending the established calculation of absorbed fractions for spheres of known diameter to absorbed fractions of tissue planes (annuli) of known thickness. We calculated a Deq for the respective tissues in the larynx for 131I-, 186Re-, 188Re-, 67Cu-, 90Y-, and 153Sm-labeled HMFG1. Compensatory decrease to the external radiotherapy dose is 1.1 Gy for each injection of the radioimmunoconjugate we propose to use (131I-HMFG1). This would be best implemented through the modification of the external radiotherapy fractions falling within 2 effective half-lives of this radioconjugate in the mucosa.
我们建议将放射性标记抗体与外照射放疗联合使用,以改善头颈癌的局部区域控制。在这种情况下,对黏膜的放射毒性可能成为剂量限制因素,因此需要计算对外照射放疗可能的补偿性减少量。为此,重建了该解剖区域代表性器官——喉部的以下理论模型,并得出了一系列发射β射线的同位素的局部剂量学数据。该模型被重建为圆柱形同心管,外径设定为38毫米,高度为44毫米。使用已公布的成人喉部平均重量(28克)和软骨重量(14.7克)。计算了我们患者的5个黏膜样本的平均黏膜重量,为2.0±0.4(标准差)克。其余重量分配给脂肪/肌肉部分(11.3克)。使用软骨(1.10克/立方厘米)、黏膜(1.04克/立方厘米)和脂肪/肌肉(1.04克/立方厘米)的比重来交叉核对理论管状组织壳的体积/质量差异。使用已确定的最大声门直径24毫米来计算中央气柱体积。8个代表性喉肿瘤的平均喉肿瘤体积为4.4±3.1立方厘米。黏膜的组织部分厚度为660微米,肌肉/脂肪为3100微米,软骨为3320微米。通过将已知直径球体的吸收分数既定计算扩展到已知厚度的组织平面(环)的吸收分数,这些值允许计算多种理论放射免疫缀合物的剂量吸收分数。我们计算了131I-、186Re-、188Re-、67Cu-、90Y-和153Sm标记的HMFG1在喉部各组织中的Deq。对于我们建议使用的放射免疫缀合物(131I-HMFG1),每次注射对外照射放疗剂量的补偿性减少量为1.1 Gy。这最好通过修改外照射放疗分次剂量来实现,这些分次剂量应落在该放射性缀合物在黏膜中的2个有效半衰期内。