Suppr超能文献

Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase.

作者信息

Ma Y, Henderson H E, Liu M S, Zhang H, Forsythe I J, Clarke-Lewis I, Hayden M R, Brunzell J D

机构信息

Department of Medical Genetics, University of British Columbia, Vancouver, Canada.

出版信息

J Lipid Res. 1994 Nov;35(11):2049-59.

PMID:7868983
Abstract

Lipoprotein lipase (LPL) interaction with membrane-associated polyanions is a critical component of normal catalytic function. Two strong candidate binding regions, rich in arginine and lysine residues, have been defined in the N-terminal domain (aa279-282 and aa292-304) that show homology to the heparin-binding consensus sequences -X-B-B-X-B-X- and -X-B-B-B-X-X-B-X-, respectively. Additional candidate regions appear in the C-terminal domain, (residues 390-393), which are homologous to the thrombospondin heparin-binding repeat, and the positively charged terminal decapeptide (residues 439-448). To determine residues and domains critical to heparin binding, we have generated different LPL mutants that have alanine substitutions of single arginine and lysine residues and sequence interchanges with the homologous hepatic (HL) and pancreatic (PL) lipases. The mutant cDNAs were expressed in COS-1 cells and catalytically active mutants were assessed for binding to heparin-Sepharose. All the alanine substitutions within the two regions homologous to the heparin-binding consensus sequences in the N-terminal domain either abolished activity or produced a lowering of heparin binding affinity. None of the mutants in the C-terminal domain of LPL showed a loss of activity or a reduction in heparin binding affinity. These data demonstrate that charged residues at positions 279-282 and 292-304 of LPL are important for heparin binding affinity whereas the residues 390-393 and 439-448 in the C-terminal domain are not involved in heparin binding.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验