Suppr超能文献

混合贝叶斯网络:高斯分布的混合。

Mixed Bayesian networks: a mixture of Gaussian distributions.

作者信息

Chevrolat J P, Rutigliano F, Golmard J L

机构信息

INSERM 194 et Département de Biostatistique et Informatique Médicale, CHU Pitié Salpêtrière, Paris, France.

出版信息

Methods Inf Med. 1994 Dec;33(5):535-42.

PMID:7869953
Abstract

Mixed Bayesian networks are probabilistic models associated with a graphical representation, where the graph is directed and the random variables are discrete or continuous. We propose a comprehensive method for estimating the density functions of continuous variables, using a graph structure and a set of samples. The principle of the method is to learn the shape of densities from a sample of continuous variables. The densities are approximated by a mixture of Gaussian distributions. The estimation algorithm is a stochastic version of the Expectation Maximization algorithm (Stochastic EM algorithm). The inference algorithm corresponding to our model is a variant of junction three method, adapted to our specific case. The approach is illustrated by a simulated example from the domain of pharmacokinetics. Tests show that the true distributions seem sufficiently fitted for practical application.

摘要

混合贝叶斯网络是与图形表示相关联的概率模型,其中图形是有向的,随机变量是离散的或连续的。我们提出了一种综合方法,用于使用图形结构和一组样本估计连续变量的密度函数。该方法的原理是从连续变量的样本中学习密度的形状。密度由高斯分布的混合来近似。估计算法是期望最大化算法的随机版本(随机期望最大化算法)。与我们的模型相对应的推理算法是连接树方法的一种变体,适用于我们的特定情况。通过药代动力学领域的一个模拟示例来说明该方法。测试表明,真实分布似乎足以满足实际应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验