Ehrnford L E, Fransson H
Department of Oral Technology and Biomaterials Science, Faculty of Odontology, University of Lund, Malmö, Sweden.
Swed Dent J. 1994;18(5):207-11.
Compressive fracture resistance of the marginal ridge was studied in large tunnel preparations, before and after restoration with cermet (Ketac Silver, ESPE), a universal hybrid composite (Superlux, DMG) and an experimental composite. Each group was represented by six tunnels in extracted upper premolars. The tunnels were prepared by the use of round burs up to size #6. Remaining ridge width was 1.5 mm and ridge height 1.7 mm in the contact area. The ridge was loaded to fracture by a rod placed perpendicular to the ridge. Generally this resulted in a shear fracture of the restoration. There was no significant reinforcement of the ridge by the cermet whereas the composites both reinforced by the same magnitude, averaging 62%. It was concluded that the ridge could be considered a "megafiller" where contact need to be preserved and contour protected against proximal and occlusal wear of the restoration. Clinically there would therefore be good reasons to save even ridge areas with very low inherent strength. Based on the present study composite resin might therefore be the filling material of choice for such tunnel preparations.