Suppr超能文献

Simulation of two-dimensional anisotropic cardiac reentry: effects of the wavelength on the reentry characteristics.

作者信息

Leon L J, Roberge F A, Vinet A

机构信息

Institute of Biomedical Engineering, Ecole Polytechnique, Montréal, Québec, Canada.

出版信息

Ann Biomed Eng. 1994 Nov-Dec;22(6):592-609. doi: 10.1007/BF02368286.

Abstract

A two-dimensional sheet model was used to study the dynamics of reentry around a zone of functional block. The sheet is a set of parallel, continuous, and uniform cables, transversely interconnected by a brick-wall arrangement of fixed resistors. In accord with experimental observations on cardiac tissue, longitudinal propagation is continuous, whereas transverse propagation exhibits discontinuous features. The width and length of the sheet are 1.5 and 5 cm, respectively, and the anisotropy ratio is fixed at approximately 4:1. The membrane model is a modified Beeler-Reuter formulation incorporating faster sodium current dynamics. We fixed the basic wavelength and action potential duration of the propagating impulse by dividing the time constants of the secondary inward current by an integer K. Reentry was initiated by a standard cross-shock protocol, and the rotating activity appeared as curling patterns around the point of junction (the q-point) of the activation (A) and recovery (R) fronts. The curling R front always precedes the A front and is separated from it by the excitable gap. In addition, the R front is occasionally shifted abruptly through a merging with a slow-moving triggered secondary recovery front that is dissociated from the A front and q-point. Sustained irregular reentry associated with substantial excitable gap variations was simulated with short wavelengths (K = 8 and K = 4). Unsustained reentry was obtained with a longer wavelength (K = 2), leading to a breakup of the q-point locus and the triggering of new activation fronts.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验