Suppr超能文献

Regulation of HIV-1 gag protein subcellular targeting by protein kinase C.

作者信息

Yu G, Shen F S, Sturch S, Aquino A, Glazer R I, Felsted R L

机构信息

Laboratory of Biological Chemistry, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255.

出版信息

J Biol Chem. 1995 Mar 3;270(9):4792-6. doi: 10.1074/jbc.270.9.4792.

Abstract

The human immunodeficiency virus type 1 internal structural protein precursor, p55, and its corresponding matrix proteolytic fragment, p17, are phosphorylated at Ser111 by protein kinase C. COS-7 cells transfected with plasmids encoding either the wild-type or Ser111-->Ala mutated human immunodeficiency virus type 1 gag gene matrix domain proteins were treated with phorbol 12-myristate 13-acetate (PMA), and the phosphorylation of the expressed p17 proteins was examined by radioimmunoprecipitation, SDS-polyacrylamide gel electrophoresis, and autoradiography. PMA treatment of transfected cells resulted in a 4-5-fold increase in wild-type p17 (but not mutated p17) phosphorylation; however, mutated p17 exhibited a low basal level of phosphorylation that was not affected by PMA, suggesting that additional sites were phosphorylated. PMA treatment of cells expressing wild-type p17 produced a dramatic shift in the localization of p17 from the cytosol to the membrane fraction within 8-15 min, followed by a slow quantitative dissociation of p17 back into the cytosol by 90 min. The cytosol-to-membrane translocation was dependent on N-myristoylated p17 since cells expressing p17 with a Gly2-->Ala mutation did not localize to the membrane. PMA also failed to induce the translocation of fully N-myristoylated Ser111-->Ala p17, suggesting that p17 phosphorylation at Ser111 was responsible for membrane association. This conclusion was confirmed by the finding of phosphorylated wild-type p17 in the membrane fraction only after PMA treatment. These results suggest that a "myristoyl-protein switch" regulates the reversible membrane targeting of p17 by protein kinase C-mediated phosphorylation. This signal may provide a mechanism for the cellular regulation of virus development through modulation of gag protein-related developmental steps such as capsid targeting, assembly, encapsidation, budding, and maturation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验