Suppr超能文献

脑干前庭动眼神经元的分数阶动力学

The fractional-order dynamics of brainstem vestibulo-oculomotor neurons.

作者信息

Anastasio T J

机构信息

Beckman Institute, University of Illinois, Urbana 61801.

出版信息

Biol Cybern. 1994;72(1):69-79. doi: 10.1007/BF00206239.

Abstract

The vestibulo-ocular reflex (VOR) and other oculomotor subsystems such as pursuit and saccades are ultimately mediated in the brainstem by premotor neurons in the vestibular and prepositus nuclei that relay eye movement commands to extraocular motoneurons. The premotor neurons receive vestibular signals from canal afferents. Canal afferent frequency responses have a component that can be characterized as a fractional-order differentiation (dkx/dtk where k is a nonnegative real number). This article extends the use of fractional calculus to describe the dynamics of motor and premotor neurons. It suggests that the oculomotor integrator, which converts eye velocity into eye position commands, may be of fractional order. This order is less than one, and the velocity commands have order one or greater, so the resulting net output of motor and premotor neurons can be described as fractional differentiation relative to eye position. The fractional derivative dynamics of motor and premotor neurons may serve to compensate fractional integral dynamics of the eye. Fractional differentiation can be used to account for the constant phase shift across frequencies, and the apparent decrease in time constant as VOR and pursuit frequency increases, that are observed for motor and premotor neurons. Fractional integration can reproduce the time course of motor and premotor neuron saccade-related activity, and the complex dynamics of the eye. Insight into the nature of fractional dynamics can be gained through simulations in which fractional-order differentiators and integrators are approximated by sums of integer-order high-pass and low-pass filters, respectively. Fractional dynamics may be applicable not only to the oculomotor system, but to motor control systems in general.

摘要

前庭眼反射(VOR)以及其他眼动子系统,如追踪和扫视,最终由前庭核和前庭旁核中的运动前神经元在脑干中介导,这些神经元将眼动指令传递给眼外运动神经元。运动前神经元从前庭传入神经接收前庭信号。前庭传入神经的频率响应有一个成分可以被描述为分数阶微分(dkx/dtk,其中k是非负实数)。本文扩展了分数阶微积分的应用,以描述运动神经元和运动前神经元的动力学。研究表明,将眼速度转换为眼位置指令的眼动积分器可能是分数阶的。这个阶数小于1,而速度指令的阶数为1或更大,因此运动神经元和运动前神经元的最终净输出可以被描述为相对于眼位置的分数阶微分。运动神经元和运动前神经元的分数阶导数动力学可能用于补偿眼睛的分数阶积分动力学。分数阶微分可以用来解释在运动神经元和运动前神经元中观察到的跨频率的恒定相位偏移,以及随着VOR和追踪频率增加时间常数明显减小的现象。分数阶积分可以重现运动神经元和运动前神经元与扫视相关活动的时间进程以及眼睛的复杂动力学。通过模拟可以深入了解分数阶动力学的本质,在模拟中分数阶微分器和积分器分别由整数阶高通滤波器和低通滤波器的和近似。分数阶动力学可能不仅适用于眼动系统,而且一般适用于运动控制系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验