Suppr超能文献

中枢神经系统中的一氧化氮。

Nitric oxide in the central nervous system.

作者信息

Lipton S A, Singel D J, Stamler J S

机构信息

Department of Neurology, Harvard Medical School, Boston, MA 02115.

出版信息

Prog Brain Res. 1994;103:359-64. doi: 10.1016/s0079-6123(08)61149-8.

Abstract
  1. The reactions of nitric oxide with superoxide can lead to neurotoxicity through formation of peroxynitrite, and not by NO. alone, at least under our conditions. 2. Transfer of NO+ groups to thiol(s) on the NMDA receptor can lead to neuroprotection by inhibiting Ca2+ influx. These findings suggest that cell function can be controlled by, or through, protein S-nitrosylation, and raise the possibility that the NO group may initiate signal transduction in or at the plasma membrane. 3. The local redox milieu of a biological system is of critical importance in understanding NO actions as disparate chemical pathways involving distinct redox related congeners of NO may trigger neurotoxic or neuroprotective pathways. These claims are highlighted in the CNS by the recent finding that tissue concentrations of cysteine approach 700 microM in settings of cerebral ischemia (Slivka and Cohen, 1993); these levels of thiol would be expected to influence the redox state of the NO group. 4. Finally, our findings suggest novel therapeutic strategies. For example, downregulation of NMDA receptor activity via S-nitrosylation with NO+ donors could be implemented in the treatment of focal ischemia, AIDS dementia, and other neurological disorders associated, at least in part, with excessive activation of NMDA receptors.
摘要
  1. 一氧化氮与超氧化物的反应可通过过氧亚硝酸盐的形成导致神经毒性,至少在我们的实验条件下,并非仅由一氧化氮单独导致。2. 将NO⁺基团转移至NMDA受体上的硫醇可通过抑制Ca²⁺内流实现神经保护作用。这些发现表明,细胞功能可通过蛋白质S-亚硝基化来控制,或者由其介导,这也增加了NO基团可能在质膜上或质膜处启动信号转导的可能性。3. 生物系统的局部氧化还原环境对于理解NO的作用至关重要,因为涉及不同氧化还原相关NO同系物的不同化学途径可能引发神经毒性或神经保护途径。中枢神经系统中的这些观点因最近的一项发现而得到强调,即在脑缺血情况下,半胱氨酸的组织浓度接近700微摩尔(Slivka和Cohen,1993年);预计这些硫醇水平会影响NO基团的氧化还原状态。4. 最后,我们的研究结果提示了新的治疗策略。例如,通过用NO⁺供体进行S-亚硝基化来下调NMDA受体活性,可用于治疗局灶性缺血、艾滋病痴呆以及其他至少部分与NMDA受体过度激活相关的神经疾病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验