Baca O G, Rohrbach M S, Bodley J W
Biochemistry. 1976 Oct 19;15(21):4570-4. doi: 10.1021/bi00666a004.
The interactions among Escherichia coli elongation factor G (EF-G), guanine nucleotides, ribosomes, and fusidic acid were investigated by a number of physical techniques. Equilibrium dialysis studies demonstrated the existence of a binary EF-G-GDP complex. This complex forms with a stoichiometry of ca 1:1 and an apparent Ka of 2.5 X 10(5) M-1. While no evidence was obtained for the formation of a ribosome-GDP complex, in the presence of ribosomes, the apparent Ka for guanosine diphosphate (GDP) increased 40-fold over that for binding to EF-G alone. Although the apparent Ka increased, the stoichiometry remained ca. 1 mol of GDP/mol of EF-G. An upper limit of 1.3 X 10(7) M-1 was calculated for the Ka for binding of ribosomes to the EF-G-GDP complex. Fusidic acid had no effect on the apparent Ka's for either the EF-G-GDP or EF-G-beta, gamma-methyleneguanosine triphosphate (GMP-P(CH2)P)=ribosome complexes, but markedly increased the Ka for GDP in the EF-G-GDP-ribosome complex without altering the stoichiometry. The apparent Ka for GDP was shown to be dependent upon the fusidic acid concentration. In addition, the rate of GDP exchange into the quaternary EF-G-GDP-ribosome-fusidic acid complex was inversely related to the fusidic acid concentration. All of the data obtained in these studies suggest that the formation and dissociation of complexes involving EF-G and guanine nucleotides is ordered. GDP is the first component to bind to EF-G, followed by the ribosome, and, finally, fusidic acid. This conclusion is consistent with the kinetic mechanism for the hydrolysis of GTP by EF-G and the ribosome proposed in the preceding paper of this issue (Rohrbach and Bodley (1976b). In addition to these binding studies, guanine nucleotides have also been shown to protect EF-G against both limited trypsinolysis and chemical modification by N-ethylmaleimide. These observations offer additional evidence for the existence of a guanine nucleotide binding site on EF-G.
运用多种物理技术研究了大肠杆菌延伸因子G(EF-G)、鸟嘌呤核苷酸、核糖体和夫西地酸之间的相互作用。平衡透析研究证实了二元EF-G-GDP复合物的存在。该复合物以约1:1的化学计量比形成,表观解离常数(Ka)为2.5×10⁵ M⁻¹。虽然未获得核糖体-GDP复合物形成的证据,但在核糖体存在的情况下,鸟苷二磷酸(GDP)的表观Ka相较于单独与EF-G结合时增加了40倍。尽管表观Ka增加了,但化学计量比仍约为1摩尔GDP/摩尔EF-G。计算得出核糖体与EF-G-GDP复合物结合的Ka上限为1.3×10⁷ M⁻¹。夫西地酸对EF-G-GDP或EF-G-β,γ-亚甲基鸟苷三磷酸(GMP-P(CH₂)P)=核糖体复合物的表观Ka没有影响,但显著增加了EF-G-GDP-核糖体复合物中GDP的Ka,且不改变化学计量比。GDP的表观Ka显示依赖于夫西地酸浓度。此外,GDP交换进入四元EF-G-GDP-核糖体-夫西地酸复合物的速率与夫西地酸浓度呈负相关。这些研究中获得的所有数据表明,涉及EF-G和鸟嘌呤核苷酸的复合物的形成和解离是有序的。GDP是首先与EF-G结合的成分,其次是核糖体,最后是夫西地酸。这一结论与本期前一篇论文(Rohrbach和Bodley(1976b))中提出的EF-G和核糖体催化GTP水解的动力学机制一致。除了这些结合研究外,鸟嘌呤核苷酸还被证明可保护EF-G免受有限的胰蛋白酶消化和N-乙基马来酰亚胺的化学修饰。这些观察结果为EF-G上存在鸟嘌呤核苷酸结合位点提供了额外证据。