Suppr超能文献

国际临床化学联合会。人工智能在临床实验室分析系统中的应用。国际临床化学联合会分析系统委员会。

International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

作者信息

Place J F, Truchaud A, Ozawa K, Pardue H, Schnipelsky P

机构信息

DAKO A/S, Glostrup, Copenhagen, Denmark.

出版信息

Clin Chim Acta. 1994 Dec 16;231(2):S5-34. doi: 10.1016/0009-8981(94)90206-2.

Abstract

The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

摘要

近年来,随着人工智能(AI)以专家系统和神经网络的形式被引入,以标准计算软件的形式将信息处理技术融入分析系统的进程不断推进。本文探讨了软件在系统操作、控制和自动化中的作用,并尝试对智能进行定义。人工智能的特点在于其处理不完整和不精确信息以及积累知识的能力。基于标准计算技术的专家系统在很大程度上依赖于对其进行编程以呈现现实世界的领域专家和知识工程师。神经网络旨在模拟人类大脑的模式识别和并行处理能力,是通过学习而非编程来实现的。未来可能在于神经网络的识别能力与专家系统的合理化能力相结合。在本文的第二部分,给出了人工智能在用于知识工程和医学诊断的独立系统以及用于故障检测、图像分析、用户界面、自然语言处理、机器人技术和机器学习的嵌入式系统中的应用示例,这些应用与临床实验室相关。得出的结论是,人工智能构成了一种集体知识产权形式,并且需要对已经在临床实验室中广泛使用的系统进行更好的记录、评估和监管。

相似文献

4
Artificial neural networks and their use in quantitative pathology.
Anal Quant Cytol Histol. 1990 Dec;12(6):379-93.
7
Knowledge Engineering in Chemistry: From Expert Systems to Agents of Creation.化学知识工程:从专家系统到创造主体。
Acc Chem Res. 2023 Jan 17;56(2):128-139. doi: 10.1021/acs.accounts.2c00617. Epub 2022 Dec 14.
9
Artificial intelligence: Implications for the future of work.人工智能:对未来工作的影响。
Am J Ind Med. 2019 Nov;62(11):917-926. doi: 10.1002/ajim.23037. Epub 2019 Aug 22.
10
The role of soft computing in intelligent machines.软计算在智能机器中的作用。
Philos Trans A Math Phys Eng Sci. 2003 Aug 15;361(1809):1749-80. doi: 10.1098/rsta.2003.1223.

引用本文的文献

1
Basic problems of serological laboratory diagnosis.血清学实验室诊断的基本问题。
Mol Biotechnol. 1999 Dec 1;13(2):89-111. doi: 10.1385/MB:13:2:89.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验