Maier J, Ninnemann H
Institut für Chemische Pflanzenphysiologie/Pflanzenbiochemie, Universität Tübingen, Germany.
Photochem Photobiol. 1995 Jan;61(1):43-53. doi: 10.1111/j.1751-1097.1995.tb09241.x.
Occurrence, biosynthesis and some functions of tetrahydrobiopterin (H4biopterin) in animals are well known. The biochemistry of H4biopterin in other organisms than animals was hitherto not widely investigated. Recently H4biopterin was found in the phytoflagellate Euglena gracilis, in the zygomycete Phycomyces blakesleeanus and in the ascomycete Neurospora crassa. In Euglena, Neurospora and Phycomyces the enzymatic activities of GTP cyclohydrolase I, 6-pyruvoyl tetrahydropterin synthase and sepiapterin reductase are detectable and the biosynthesis follows the same steps as were shown for animals. The biosynthetic enzymes, however, show a much lower sensitivity to those inhibitors that act on vertebrate enzymes. 2,4-Diamino-6-hydroxypyrimidine as inhibitor of GTP cyclohydrolase I and N-acetylserotonin or N-methoxyacetylserotonin as inhibitors of sepiapterin reductase can decrease pteridine biosynthesis significantly, in vitro and in vivo. The apparent Km values are in general higher when compared with the respective animal enzymes. In Neurospora, the conversion of GTP to dihydroneopterin triphosphate was closely associated with subsequent production of 6-hydroxymethyl-7,8-dihydropterin due to the high activity of dihydroneopterin aldolase, different from all other tested organisms. Investigations involving inhibition of pteridine synthesis might be a useful tool for evaluating the hypothesis that pteridines in fungi and plants are co-chromophores of various blue light-dependent, flavin-containing photoreceptors.
四氢生物蝶呤(H4biopterin)在动物体内的产生、生物合成及一些功能已为人熟知。迄今为止,除动物外其他生物体中H4biopterin的生物化学研究并不广泛。最近,在植物鞭毛虫纤细裸藻、接合菌布氏根霉和子囊菌粗糙脉孢菌中发现了H4biopterin。在裸藻、脉孢菌和根霉中可检测到GTP环化水解酶I、6 - 丙酮酸四氢蝶呤合酶和蝶啶还原酶的酶活性,其生物合成步骤与动物体内的相同。然而,这些生物合成酶对作用于脊椎动物酶的抑制剂的敏感性要低得多。2,4 - 二氨基 - 6 - 羟基嘧啶作为GTP环化水解酶I的抑制剂,以及N - 乙酰血清素或N - 甲氧基乙酰血清素作为蝶啶还原酶的抑制剂,在体外和体内均可显著降低蝶呤的生物合成。与相应的动物酶相比,其表观Km值通常更高。在脉孢菌中,由于二氢蝶呤醛缩酶的高活性,GTP向二氢新蝶呤三磷酸的转化与随后6 - 羟甲基 - 7,8 - 二氢蝶呤的产生密切相关,这与所有其他测试生物体不同。涉及抑制蝶呤合成的研究可能是评估以下假设的有用工具:真菌和植物中的蝶呤是各种蓝光依赖的、含黄素的光感受器的共发色团。