Takahashi N, Neel J V
Department of Genetics, Radiation Effects Research Foundation, Hiroshima, Japan.
Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10725-9. doi: 10.1073/pnas.90.22.10725.
In 1982, we advanced a phylogeny that attributed eight alleles of the phosphoglucomutase 1 locus (PGM1) to three independent mutations in a primal allele, followed by four intragenic recombination events involving these mutants [Takahashi, N., Neel, J. V., Satoh, C., Nishizaki, J. & Masunari, N. (1982) Proc. Natl. Acad. Sci. USA 79, 6636-6640]. The recent description of a cDNA probe for this locus [Whitehouse, D. B., Putt, W., Lovegrove, J. U., Morrison, K., Hollyoake, M., Fox, M. F., Hopkinson, D. A. & Edwards, Y. H. (1992) Proc. Natl. Acad. Sci. USA 89, 411-415] now renders it possible to test the validity of this phylogeny. cDNAs of PGM1 reverse-transcribed from mRNAs obtained from Japanese individuals possessing eight different electrophoretically defined alleles (PGM11+, PGM11-, PGM12+, PGM12-, PGM13+, PGM13-, PGM17+, PGM17-) were amplified by PCR and the sequences were determined. Only three different base substitutions were identified when PGM11+ was taken as the reference allele, as follows: an A to T transversion at residue 265, a C to T transition at residue 723, and a T to C transition at residue 1320. The second of these substitutions creates a Bgl II restriction enzyme site and the third creates a Nla III site. At the amino acid level, these substitutions alter amino acid 67 from Lys to Met, amino acid 220 from Arg to Cys, and amino acid 419 from Tyr to His, respectively. These mutations resulted in the electrophoretic properties defining PGM17+, the PGM12+, and the PGM11- alleles, respectively. Subsequent intragenic recombinational events resulted in the remaining four alleles. For two of these latter alleles (PGM17- and PGM13-), more than one type of intragenic crossover can produce the allele. These findings verify the predicted phylogeny and provide a case study in the evolution of complexity at a genetic locus.
1982年,我们提出了一种系统发育学观点,认为磷酸葡萄糖变位酶1位点(PGM1)的八个等位基因源自一个原始等位基因的三次独立突变,随后发生了涉及这些突变体的四次基因内重组事件[高桥,N.,尼尔,J. V.,佐藤,C.,西崎,J. & 增成,N.(1982年)《美国国家科学院院刊》79,6636 - 6640]。最近对该位点的一种cDNA探针的描述[怀特豪斯,D. B.,普特,W.,洛夫格罗夫,J. U.,莫里森,K.,霍利奥克,M.,福克斯,M. F.,霍普金森,D. A. & 爱德华兹,Y. H.(1992年)《美国国家科学院院刊》89,411 - 415]现在使得检验这种系统发育学的有效性成为可能。从拥有八个不同电泳定义等位基因(PGM11 +、PGM11 -、PGM12 +、PGM12 -、PGM13 +、PGM13 -、PGM17 +、PGM17 -)的日本个体获得的mRNA逆转录得到的PGM1的cDNA,通过聚合酶链反应(PCR)进行扩增并测定序列。当以PGM11 +作为参考等位基因时,仅鉴定出三种不同的碱基替换,如下:第265位残基处的A到T颠换、第723位残基处的C到T转换以及第1320位残基处的T到C转换。这些替换中的第二个产生了一个Bgl II限制性酶切位点而第三个产生了一个Nla III位点。在氨基酸水平上,这些替换分别将第67位氨基酸从赖氨酸变为甲硫氨酸、第220位氨基酸从精氨酸变为半胱氨酸以及第419位氨基酸从酪氨酸变为组氨酸。这些突变分别导致了定义PGM17 +、PGM12 +和PGM11 -等位基因的电泳特性。随后的基因内重组事件产生了其余四个等位基因。对于后两个等位基因中的两个(PGM17 -和PGM13 -),不止一种类型的基因内交叉可以产生该等位基因。这些发现证实了预测的系统发育学,并提供了一个关于基因位点复杂性进化的案例研究。