Suppr超能文献

Characterization of a human myeloid leukemia cell line highly resistant to taxol.

作者信息

Bhalla K, Huang Y, Tang C, Self S, Ray S, Mahoney M E, Ponnathpur V, Tourkina E, Ibrado A M, Bullock G

机构信息

Department of Medicine, Medical University of South Carolina, Charleston.

出版信息

Leukemia. 1994 Mar;8(3):465-75.

PMID:7907395
Abstract

Taxol-resistant sublines of HL-60 myeloid leukemia cells (HL-60/TAX100 and HL-60/TAX1000) have been isolated in vitro by subculturing in progressively higher concentrations of taxol. HL-60/TAX100 and HL-60/TAX1000 cells are capable of continuous growth in the presence of 0.1 microM and 1.0 microM taxol, respectively, and the IC50 (50% growth inhibitory dose) values for taxol for the two sublines are 0.34 and 2.44 microM as compared to 3.1 nM for the parent HL-60 cells. HL-60/TAX100 and HL-60/TAX1000 cells display a variable degree of cross-resistance to taxotere, vincristine and doxorubicin, but are sensitive to the antimetabolite Ara-C. Both HL-60/TAX100 and HL-60/TAX1000 cells over-express MDR-1 m-RNA and the membrane efflux multidrug transporter P-glycoprotein (PGP), as determined by Western blot and immunofluorescence labeling with anti-PGP antibodies. Consequently, exposure of the taxol-resistant cells to [3H]taxol or daunomycin results in the accumulation of significantly lower levels of the two drugs. Co-treatment with cyclosporine (0.5 microgram/ml) or verapamil (10 microM) partially overcomes taxol resistance in HL-60/TAX1000 cells. Following treatment with clinically relevant concentration of taxol (1.0 microM for 24 h), HL-60 but not HL-60/TAX1000 cells display intracellular microtubular bundling, markedly enhanced accumulation of the cells in G2/M phase of cell-cycle and internucleosomal DNA fragmentation associated with apoptosis which is independent of bcl-2 gene expression. These taxol-resistant myeloid leukemia cells may serve as in vitro experimental models for examinating strategies which may have potential applicability for overcoming taxol resistance.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验