Suppr超能文献

Characterization of a human myeloid leukemia cell line highly resistant to taxol.

作者信息

Bhalla K, Huang Y, Tang C, Self S, Ray S, Mahoney M E, Ponnathpur V, Tourkina E, Ibrado A M, Bullock G

机构信息

Department of Medicine, Medical University of South Carolina, Charleston.

出版信息

Leukemia. 1994 Mar;8(3):465-75.

PMID:7907395
Abstract

Taxol-resistant sublines of HL-60 myeloid leukemia cells (HL-60/TAX100 and HL-60/TAX1000) have been isolated in vitro by subculturing in progressively higher concentrations of taxol. HL-60/TAX100 and HL-60/TAX1000 cells are capable of continuous growth in the presence of 0.1 microM and 1.0 microM taxol, respectively, and the IC50 (50% growth inhibitory dose) values for taxol for the two sublines are 0.34 and 2.44 microM as compared to 3.1 nM for the parent HL-60 cells. HL-60/TAX100 and HL-60/TAX1000 cells display a variable degree of cross-resistance to taxotere, vincristine and doxorubicin, but are sensitive to the antimetabolite Ara-C. Both HL-60/TAX100 and HL-60/TAX1000 cells over-express MDR-1 m-RNA and the membrane efflux multidrug transporter P-glycoprotein (PGP), as determined by Western blot and immunofluorescence labeling with anti-PGP antibodies. Consequently, exposure of the taxol-resistant cells to [3H]taxol or daunomycin results in the accumulation of significantly lower levels of the two drugs. Co-treatment with cyclosporine (0.5 microgram/ml) or verapamil (10 microM) partially overcomes taxol resistance in HL-60/TAX1000 cells. Following treatment with clinically relevant concentration of taxol (1.0 microM for 24 h), HL-60 but not HL-60/TAX1000 cells display intracellular microtubular bundling, markedly enhanced accumulation of the cells in G2/M phase of cell-cycle and internucleosomal DNA fragmentation associated with apoptosis which is independent of bcl-2 gene expression. These taxol-resistant myeloid leukemia cells may serve as in vitro experimental models for examinating strategies which may have potential applicability for overcoming taxol resistance.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验