Van Houwelingen H C, Zwinderman K H, Stijnen T
Department of Medical Statistics, Faculty of Medicine, University of Leiden, The Netherlands.
Stat Med. 1993 Dec 30;12(24):2273-84. doi: 10.1002/sim.4780122405.
The usual meta-analysis of a sequence of randomized clinical trials only considers the difference between two treatments and produces a point estimate and a confidence interval for a parameter that measures this difference. The usual parameter is the log(odds ratio) linked to Mantel-Haenszel methodology. Inference is made either under the assumption of homogeneity or in a random effects model that takes account of heterogeneity between trials. This paper has two goals. The first is to present a likelihood based method for the estimation of the parameters in the random effects model, which avoids the use of approximating Normal distributions. The second goal is to extend this method to a bivariate random effects model, in which the effects in both groups are supposed random. In this way inference can be made about the relationship between improvement and baseline effect. The method is demonstrated by a meta-analysis dataset of Collins and Langman.
对一系列随机临床试验进行的常规荟萃分析仅考虑两种治疗方法之间的差异,并针对衡量这种差异的参数得出点估计值和置信区间。常用参数是与曼特尔 - 亨泽尔方法相关的对数(优势比)。推断是在同质性假设下进行的,或者是在考虑试验间异质性的随机效应模型中进行的。本文有两个目标。第一个目标是提出一种基于似然性的方法来估计随机效应模型中的参数,该方法避免使用近似正态分布。第二个目标是将此方法扩展到双变量随机效应模型,其中两组的效应都假定为随机的。通过这种方式,可以对改善与基线效应之间的关系进行推断。该方法通过柯林斯和朗曼的一个荟萃分析数据集进行了演示。