Suppr超能文献

Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis.

作者信息

Horovitz A, Bochkareva E S, Yifrach O, Girshovich A S

机构信息

Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.

出版信息

J Mol Biol. 1994 Apr 29;238(2):133-8. doi: 10.1006/jmbi.1994.1275.

Abstract

A search for co-ordinated amino acid changes in the hsp60 family of chaperonins suggested that cysteine residues at positions 137 and 518 in the Escherichia coli chaperonin GroEL may interact with each other. In order to determine whether this interaction indeed exists we constructed a double-mutant cycle comprising wild-type GroEL, the single mutants Cys137-->Ser and Cys518-->Ser and the corresponding double mutant. The effects of the two mutations on the function of GroEL, in assisting the refolding of a non-folded protein substrate (rhodanese), are shown to be non-additive. It is also shown that ADP by itself specifically destabilizes the Cys518-->Ser mutant GroEL particle with this effect being suppressed in the double mutant. The observed pattern of co-ordinated mutations in the hsp60 family of chaperonins is thus shown to reflect a real interaction, though most likely indirect, between Cys137 and Cys518 in GroEL. Our study demonstrates that patterns of co-ordinated mutations combined with double-mutant cycle analysis can provide structural information on interactions in a protein without an available three-dimensional structure at atomic resolution.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验