Beeckmans S, Van Driessche E, Kanarek L
Laboratorium voor Chemie der Proteïnen Vrije Universiteit Brussel, Sint-Genesius-Rode, Belgium.
J Mol Recognit. 1993 Dec;6(4):195-204. doi: 10.1002/jmr.300060408.
In recent years it has become clear that a cell cannot be visualized as a 'bag' filled with enzymes dissolved in bulk water. The aqueous-phase properties in the interior of a cell are, indeed, essentially different from those of an ordinary aqueous solution. Large amounts of water are believed to be organized in layers at the surface of intracellular structural proteins and membranes. Such considerations prompt us to reconsider the operation and regulation of metabolic pathways. Enzymes of metabolic pathways are nowadays thought to be clustered and operate as 'metabolons'. Very often interactions between enzymes of a pathway can exclusively be evidenced in vitro in media which are known to reduce the water concentration in the vicinity of the proteins. Immobilized enzyme preparations have been shown to be excellent tools for this type of research. We describe here some recent studies where immobilized enzymes have been used in various applications to investigate associations among enzymes of a number of different metabolic pathways (glycolysis/gluconeogenesis, citric acid cycle and its connection to the electron transport chain, aspartate-malate shuttle, glyoxylate cycle). Advantages and disadvantages of the different techniques are also discussed.