Suppr超能文献

植物中的脂质动员与糖异生:乙醛酸循环酶活性是否构成一个真正的循环?一种假说。

Lipid mobilization and gluconeogenesis in plants: do glyoxylate cycle enzyme activities constitute a real cycle? A hypothesis.

作者信息

Escher C L, Widmer F

机构信息

Institute of Plant Biology and Physiology, University of Lausanne, Switzerland.

出版信息

Biol Chem. 1997 Aug;378(8):803-13.

PMID:9377475
Abstract

Glyoxysomes are specialized peroxisomes present in various plant organs such as germinating cotyledons or senescing leaves. They are the site of beta-oxidation and of the glyoxylate cycle. These consecutive pathways are essential to the maintenance of gluconeogenesis initiated by the degradation of reserve or structural lipids. In contrast to mitochondrial beta-oxidation, which is prevalent in animal cells, glyoxysomal beta-oxidation and the glyoxylate cycle have no direct access to the mitochondrial respiratory chain because of the impermeability of the glyoxysomal membrane to the reduced cofactors. The necessity of NAD+ regeneration can conceivably be fulfilled by membrane redox chains and/or by transmembrane shuttles. Experimental evidence based on the active metabolic roles of higher plant glyoxysomes and yeast peroxisomes suggests the coexistence of two mechanisms, namely a reductase/peroxidase membrane redox chain and a malate/aspartate shuttle susceptible to transfer electrons to the mitochondrial ATP generating system. Such a model interconnects beta-oxidation, the glyoxylate cycle, the respiratory chain and gluconeogenesis in such a way that glyoxysomal malate dehydrogenase is an essential and exclusive component of beta-oxidation (NAD+ regeneration). Consequently, the classical view of the glyoxylate cycle is superseded by a tentative reactional scheme deprived of cyclic character.

摘要

乙醛酸循环体是存在于各种植物器官中的特殊过氧化物酶体,如正在萌发的子叶或衰老的叶片。它们是β-氧化和乙醛酸循环的场所。这些连续的途径对于由储备或结构脂质降解引发的糖异生作用的维持至关重要。与动物细胞中普遍存在的线粒体β-氧化不同,由于乙醛酸循环体膜对还原型辅因子不可渗透,乙醛酸循环体β-氧化和乙醛酸循环无法直接进入线粒体呼吸链。NAD⁺再生的必要性可以通过膜氧化还原链和/或跨膜穿梭来实现。基于高等植物乙醛酸循环体和酵母过氧化物酶体的活跃代谢作用的实验证据表明,两种机制并存,即还原酶/过氧化物酶膜氧化还原链和能够将电子转移到线粒体ATP生成系统的苹果酸/天冬氨酸穿梭。这样一个模型以一种使乙醛酸循环体苹果酸脱氢酶成为β-氧化(NAD⁺再生)必不可少且唯一组成部分的方式,将β-氧化、乙醛酸循环、呼吸链和糖异生联系起来。因此,乙醛酸循环的经典观点被一个缺乏循环特征的初步反应方案所取代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验