Koulougliotis D, Innes J B, Brudvig G W
Department of Chemistry, Yale University, New Haven, Connecticut 06511.
Biochemistry. 1994 Oct 4;33(39):11814-22. doi: 10.1021/bi00205a018.
Saturation-recovery and progressive microwave power saturation EPR spectroscopies have been used to probe the location of the chlorophyllZ+ (ChlZ+) radical species in Mn-depleted photosystems II (PSII). The spin-lattice relaxation transients of ChlZ+ were non-single-exponential due to a dipole-dipole interaction with one of the other paramagnetic centers in PSII. Measurements on CN(-)-treated, Mn-depleted PSII membrane samples, in which the non-heme Fe(II) is converted into its low-spin, diamagnetic form, confirmed that the non-heme Fe(II) caused the dipolar relaxation enhancement of ChlZ+. The saturation-recovery EPR data were fit to a dipolar model [Hirsh, D. J., Beck, W. F., Innes, J. B., & Brudvig, G. W. (1992) Biochemistry 31, 532] which takes into account the isotropic (scalar) and orientation-dependent (dipolar) contributions to the spin-lattice relaxation of the radical. The temperature dependence of the dipolar rate constants of ChlZ+ was identical to the temperature dependencies recently observed for the stable tyrosine radical, YD., and the special pair bacteriochlorophyll radical, (BChla)2+, in PSII and in reaction centers from Rhodobacter sphaeroides, respectively. Because the non-heme Fe(II) is known to cause a dipolar relaxation enhancement of the radicals in both of the latter cases, this result provides further evidence that the non-heme Fe(II) causes the dipolar relaxation enhancement of ChlZ+ and, moreover, demonstrates that the magnetic properties of the non-heme Fe(II) in PSII and in reaction centers from Rhodobacter sphaeroides are very similar. By using the known Fe(II)-(BChla)2+ distance for calibration, we estimate the Fe(II)-ChlZ+ distance to be 39.5 +/- 2.5 A.(ABSTRACT TRUNCATED AT 250 WORDS)
饱和恢复和渐进微波功率饱和电子顺磁共振光谱已被用于探测叶绿素Z +(ChlZ +)自由基物种在缺锰光系统II(PSII)中的位置。由于与PSII中其他顺磁中心之一存在偶极 - 偶极相互作用,ChlZ +的自旋晶格弛豫瞬态是非单指数的。对经CN( - )处理的缺锰PSII膜样品进行测量,其中非血红素Fe(II)转化为其低自旋抗磁性形式,证实非血红素Fe(II)导致ChlZ +的偶极弛豫增强。饱和恢复电子顺磁共振数据符合偶极模型[赫什,D. J.,贝克,W. F.,英尼斯,J. B.,& 布鲁德维格,G. W.(1992年)《生物化学》31卷,532页],该模型考虑了对自由基自旋晶格弛豫的各向同性(标量)和取向依赖性(偶极)贡献。ChlZ +偶极速率常数的温度依赖性分别与最近在PSII和球形红细菌反应中心中观察到的稳定酪氨酸自由基YD和特殊对细菌叶绿素自由基(BChla)2 +的温度依赖性相同。因为已知非血红素Fe(II)在后两种情况下都会导致自由基的偶极弛豫增强,所以该结果进一步证明非血红素Fe(II)导致ChlZ +的偶极弛豫增强,而且表明PSII和球形红细菌反应中心中非血红素Fe(II)的磁性非常相似。通过使用已知的Fe(II) - (BChla)2 +距离进行校准,我们估计Fe(II) - ChlZ +距离为39.5±2.5埃。(摘要截断于250字)