van der Heide U A, Levine Y K
Debye Research Institute, University of Utrecht, The Netherlands.
Biochim Biophys Acta. 1994 Oct 12;1195(1):1-10. doi: 10.1016/0005-2736(94)90002-7.
Computer simulations are presented of the behaviour of elongated probe molecules anchored to the interface of lipid bilayers above the phase transition of the hydrocarbon chains. The simulations thus mimic the behaviour of the fluorescent probe 1-(4-(trimethylammonio)phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and Cholestane spin label in lipid systems. In contrast to any experimental technique the simulations follow the behaviour of both the lipid molecules and the probe within the bilayer structure. Thus, the relation between the behaviour of the probe molecules and the order and dynamics of the lipid chains can be studied in detail. We find that the presence of probe molecules, at the low concentrations used experimentally, causes only a marginal perturbation in the intrinsic properties of the lipid chains. The simulations presented support the conventional prescription for describing the orientational behaviour of probe molecules in lipid bilayers in terms of a local effective orienting potential. They indicate, however, that the potential arises from the confinement of the probe molecules between long segments of lipid chains in elongated free-volume cavities within the bilayer structure. In this sense the orienting potential concept needs to be refined in order to take into account the combined effect of the restricted free rattling motions of the probes within the free-volume cavities and the orientations of the cavities themselves relative to the normal to the bilayer plane. The time scale of the motions of the cavities within the bilayer is determined by the rotational motions of long segments of the lipid chains. These observations justify the use of rigid probe molecules such as TMA-DPH and Cholestane spin labels for monitoring the orientational order and dynamics in lipid bilayer systems.
本文展示了对锚定在烃链相变温度以上的脂质双层界面上的细长探针分子行为的计算机模拟。这些模拟因此模仿了脂质体系中荧光探针1-(4-(三甲基铵基)苯基)-6-苯基-1,3,5-己三烯(TMA-DPH)和胆甾烷自旋标记的行为。与任何实验技术不同,模拟追踪了脂质分子和双层结构内探针的行为。因此,可以详细研究探针分子行为与脂质链的有序性和动力学之间的关系。我们发现,在实验中使用的低浓度下,探针分子的存在仅对脂质链的固有性质产生轻微扰动。所展示的模拟支持了用局部有效取向势来描述脂质双层中探针分子取向行为的传统方法。然而,它们表明该势源于双层结构内细长自由体积腔中脂质链长段之间探针分子的限制。从这个意义上说,为了考虑探针在自由体积腔内受限的自由摆动运动以及腔本身相对于双层平面法线的取向的综合影响,需要对取向势概念进行完善。双层内腔运动的时间尺度由脂质链长段的旋转运动决定。这些观察结果证明了使用诸如TMA-DPH和胆甾烷自旋标记等刚性探针分子来监测脂质双层系统中的取向有序性和动力学的合理性。