Suppr超能文献

使用神经网络对脉冲雷达波形进行分类。

Classification of impulse radar waveforms using neural networks.

作者信息

Vrckovnik G, Chung T, Carter C R

机构信息

Airborne Radar Section, Defence Research Establishment Ottawa, Ontario, Canada.

出版信息

Int J Neural Syst. 1994 Mar;5(1):23-37. doi: 10.1142/s0129065794000049.

Abstract

In this paper, it is demonstrated that multilayer neural networks, trained with the backpropagation algorithm and radial basis functions, can classify impulse radar waveforms from three different asphalt-covered bridge decks, each with its own structure. It might be thought that the thickness of asphalt and the depth of concrete over the reinforcing bars would be nearly constant for any one bridge deck; however in practice this is not the case. There are often significant changes in the thickness of the asphalt and the cover over reinforcement. Furthermore, a certain amount of damage to the concrete caused by severe winter climate often produces a random variation in the reflected waveforms obtained from different locations. These factors lead to a significant number of combinations of waveforms that can be obtained from any given structural type of deck. The classification accuracies achieved ranged between 89.9% and 100%. The accuracies achieved after using principal components analysis to reduce the dimensionality of the input data ranged between 95.6% and 100%.

摘要

本文表明,使用反向传播算法和径向基函数训练的多层神经网络能够对来自三种不同结构的沥青覆盖桥面板的脉冲雷达波形进行分类。可能会认为,对于任何一个桥面板而言,沥青厚度和钢筋上方混凝土深度几乎是恒定的;然而在实际中并非如此。沥青厚度和钢筋保护层常常存在显著变化。此外,严冬气候对混凝土造成的一定程度损坏通常会使从不同位置获取的反射波形产生随机变化。这些因素导致从任何给定结构类型的桥面板可获得大量波形组合。分类准确率在89.9%至100%之间。使用主成分分析降低输入数据维度后所达到的准确率在95.6%至100%之间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验