Boger D L, Johnson D S, Yun W, Tarby C M
Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037.
Bioorg Med Chem. 1994 Feb;2(2):115-35. doi: 10.1016/s0968-0896(00)82007-6.
A detailed evaluation of the DNA alkylation selectivity of (+)-CC-1065, ent-(-)-CC-1065 and a series of aborted and extended analogs possessing the CPI alkylation subunit is detailed and the refinement of a model that accommodates the offset AT-rich adenine N3 alkylation selectivity of the enantiomeric agents is presented. The natural enantiomers bind in the minor groove in the 3'-->5' direction starting from the adenine N3 alkylation site across a 2 base (N-BOC-CPI; i.e. 5'-AA), 3.5 base (CPI-CDPI1/CPI-PDE-I1; i.e. 5'-AAA), 5 base (CC-1065/CPI-CDPI2; i.e. 5'-AAAAA) or 6.5 base (CPI-CDPI3; i.e. 5'-AAAAAA) AT-rich site. In contrast, the unnatural enantiomers bind in the reverse 5'-->3' direction in the minor groove and the binding site necessarily starts at the first 5' base preceding the adenine N3 alkylation site and extends across the alkylation site to the adjacent 3' bases covering an AT-rich site of 2 bases (N-BOC-CPI; e.g., 5'-AA), 5 bases (CC-1065/CPI-CDPI2; eg. 5'-AAAAA), or 6.5 bases (CPI-CDPI3; e.g. 5'-AAAAAA). Notably, the model accommodates the unusual observation that both enantiomers of N-BOC-CPI alkylate the same sites within duplex DNA (5'-AA > 5'-TA) and the required reversed binding orientation of the enantiomeric agents. The reversed binding orientation is required to permit access to the electrophilic cyclopropane and the resulting offset AT-rich alkylation selectivity is the natural consequence of the diastereomeric relationship of the adducts. Three dimensional models of the natural and unnatural enantiomer alkylations are presented which clearly illustrate the offset binding sites. A fundamentally simple model for the CC-1065 DNA alkylation reaction, that accommodates the behavior of both enantiomers, is provided in which the sequence selectivity is derived from the noncovalent binding selectivity of the agents preferentially in the narrower, sterically more accessible AT-rich minor groove, the inherent steric accessibility to the adenine N3 alkylation site that accompanies deep penetration of the agent into the minor groove within an AT-rich site, and the 2 base-pair (N-BOC-CPI), 3.5 base-pair (CPI-PDE-I1/CPI-CDPI1), 5 base-pair (CC-1065/CPI-CDPI2), or 6.5 base-pair (CPI-CDPI3) site size required to permit agent binding in the minor groove at the alkylation site.(ABSTRACT TRUNCATED AT 400 WORDS)
详细评估了(+)-CC-1065、对映体-(-)-CC-1065以及一系列具有CPI烷基化亚基的未成功和扩展类似物的DNA烷基化选择性,并提出了一个模型的改进版,该模型适用于对映体药物的富含AT的腺嘌呤N3烷基化选择性偏移。天然对映体从腺嘌呤N3烷基化位点开始,在小沟中沿3'→5'方向结合,跨越2个碱基(N-BOC-CPI;即5'-AA)、3.5个碱基(CPI-CDPI1/CPI-PDE-I1;即5'-AAA)、5个碱基(CC-1065/CPI-CDPI2;即5'-AAAAA)或6.5个碱基(CPI-CDPI3;即5'-AAAAAA)的富含AT的位点。相比之下,非天然对映体在小沟中沿相反的5'→3'方向结合,结合位点必然从腺嘌呤N3烷基化位点之前的第一个5'碱基开始,延伸穿过烷基化位点到相邻的3'碱基,覆盖2个碱基(N-BOC-CPI;例如,5'-AA)、5个碱基(CC-1065/CPI-CDPI2;例如,5'-AAAAA)或6.5个碱基(CPI-CDPI3;例如,5'-AAAAAA)的富含AT的位点。值得注意的是,该模型解释了一个不寻常的观察结果,即N-BOC-CPI的两种对映体在双链DNA内烷基化相同的位点(5'-AA > 5'-TA)以及对映体药物所需的反向结合方向。反向结合方向是为了允许亲电环丙烷接近,而产生的富含AT的烷基化选择性偏移是加合物非对映体关系的自然结果。给出了天然和非天然对映体烷基化的三维模型,清楚地说明了偏移的结合位点。提供了一个关于CC-1065 DNA烷基化反应的基本简单模型,该模型适用于两种对映体的行为,其中序列选择性源自药物在较窄、空间上更易接近的富含AT的小沟中的非共价结合选择性、药物深入富含AT位点的小沟时腺嘌呤N3烷基化位点固有的空间可及性,以及在烷基化位点允许药物在小沟中结合所需的2个碱基对(N-BOC-CPI)、3.5个碱基对(CPI-PDE-I1/CPI-CDPI1)、5个碱基对(CC-1065/CPI-CDPI2)或6.5个碱基对(CPI-CDPI3)的位点大小。(摘要截断于400字)