Dardel F
Laboratoire de Biochimie, Unité de Recherche Associée n240 du CNRS, Palaiseau, France.
Comput Appl Biosci. 1994 Jun;10(3):273-5. doi: 10.1093/bioinformatics/10.3.273.
A program is described for estimating enzymatic parameters from experimental data using Apple Macintosh computers. MC-Fit uses iterative least-square fitting and Monte-Carlo sampling to get accurate estimates of the confidence limits. This approach is more robust than the conventional covariance matrix estimation, especially in cases where experimental data is partially lacking or when the standard error on individual measurements is large. This happens quite often when analysing the properties of variant enzymes obtained by mutagenesis, as these can have severely impaired activities and reduced affinities for their substrates.
本文介绍了一种使用苹果麦金塔电脑从实验数据中估算酶参数的程序。MC - Fit采用迭代最小二乘法拟合和蒙特卡罗抽样来准确估算置信限。这种方法比传统的协方差矩阵估计更稳健,特别是在实验数据部分缺失或单个测量的标准误差较大的情况下。在分析通过诱变获得的变体酶的性质时,这种情况经常发生,因为这些变体酶的活性可能严重受损,对其底物的亲和力也会降低。