Suppr超能文献

分离的神经元和神经胶质细胞中的氨基酸转运

Amino acid transport in isolated neurons and glia.

作者信息

Hamberger A, Nyström B, Sellström A, Woiler C T

出版信息

Adv Exp Med Biol. 1976;69:221-36. doi: 10.1007/978-1-4684-3264-0_17.

Abstract

Our efforts have been directed towards characterizing amino acid uptake, metabolism and release in bulk-isolated glia and neuronal perikarya studied in parallel with nerve-endings, especially as it concerns the transmitter amino acids and the participation of glia in the clearing of the synpatic space during impulse conduction. A possible neuromodulator role for the glia at the synapse is also suggested by K+-stimulated release. Our most definitive conclusions have been based so far on studies with GABA, although we are also beginning to accumulate data for glutamate related to glutamate-glutamine compartmentation. Glia preferentially accumulate potassium and amino acids compared to neuronal perikarya, have higher Na+/K+-ATPase activity, possess high-affinity, sodium-dependent uptake systems for GABA and glutamate similar to the ones in synaptosomes, and release amino acid in response to a potassium pulse by a calcium-independent process. Low neuronal uptake could be due to loss of dendrites. Unidirectional GABA-flux from the synaptosomal to glial compartment is supported by high GAD in nerve endings compared to high GABA-T in glia. Glutamine may be a transmitter glutamate-precursor in nerve-endings since glutaminase activity is high in nerve-endings, but low in glia where glutamine is presumably made. Glutamine uptake in both glia and synaptosomes obeys low-affinity kinetics in contrast to glutamate, consistent with the inability of glutamine to excite the neuronal membrane. The studies with GABA, which are considerably more extensive, are supported by related work using glia in tissue-culture and autoradiography. There appears to be a suggested difference in the behavior of amines which were poorly taken up by the glial system. Glia, synaptosomes and neuronal perikarya, in general behaved similarly with respect to requirements for uptake and release, except in the case of Ca++, which exerted opposite effects on glial and synaptosomal uptake of GABA. We believe that work along these lines tends to firmly establish a direct role for glial cells as modulators of neuronal excitability and represents a convergence between transmitter amino acid neuropharmacology and cellular biochemistry. This not only deepens and enlarges the vocabulary of synaptic biochemistry but also undoubtedly will have major clinical applications in the fields of epilepsy and behavior.

摘要

我们致力于描述在与神经末梢平行研究的大量分离的神经胶质细胞和神经元胞体中氨基酸的摄取、代谢和释放,特别是涉及递质氨基酸以及神经胶质细胞在冲动传导过程中参与突触间隙清除的情况。钾离子刺激释放也提示了神经胶质细胞在突触处可能具有神经调节作用。到目前为止,我们最明确的结论是基于对γ-氨基丁酸(GABA)的研究,尽管我们也开始积累与谷氨酸-谷氨酰胺分隔相关的谷氨酸数据。与神经元胞体相比,神经胶质细胞优先积累钾离子和氨基酸,具有更高的钠钾ATP酶活性,拥有与突触体中类似的对GABA和谷氨酸的高亲和力、钠依赖性摄取系统,并通过不依赖钙的过程对钾离子脉冲作出反应而释放氨基酸。神经元摄取低可能是由于树突的丧失。与神经胶质细胞中高γ-氨基丁酸转氨酶(GABA-T)相比,神经末梢中高谷氨酸脱羧酶(GAD)支持了从突触体到神经胶质细胞区室的单向GABA通量。谷氨酰胺可能是神经末梢中递质谷氨酸的前体,因为神经末梢中谷氨酰胺酶活性高,但在可能合成谷氨酰胺的神经胶质细胞中活性低。与谷氨酸相反,神经胶质细胞和突触体中的谷氨酰胺摄取遵循低亲和力动力学,这与谷氨酰胺不能兴奋神经元膜一致。对GABA的研究更为广泛,使用组织培养中的神经胶质细胞和放射自显影的相关工作也支持了这些研究。在胺类物质的行为方面似乎存在差异,这些胺类物质被神经胶质系统摄取的能力较差。一般来说,神经胶质细胞、突触体和神经元胞体在摄取和释放需求方面表现相似,除了钙离子的情况,钙离子对神经胶质细胞和突触体摄取GABA产生相反的影响。我们认为,沿着这些思路开展的工作倾向于牢固确立神经胶质细胞作为神经元兴奋性调节剂的直接作用,并代表了递质氨基酸神经药理学与细胞生物化学之间的融合。这不仅深化和扩展了突触生物化学的词汇,而且无疑将在癫痫和行为领域具有重要的临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验