Suppr超能文献

Glial receptors and their intervention in astrocyto-astrocytic and astrocyto-neuronal interactions.

作者信息

Glowinski J, Marin P, Tence M, Stella N, Giaume C, Premont J

机构信息

INSERM U.114, Collège de France, Paris.

出版信息

Glia. 1994 Jun;11(2):201-8. doi: 10.1002/glia.440110214.

Abstract

As shown on cultured astrocytes from the mouse, in the presence of adenosine deaminase, 2-chloroadenosine by acting on A1-adenosine receptors potentiated the activation of phospholipase C induced by the alpha 1-adrenergic agonist, methoxamine. This potentiation required the presence of external calcium and was blocked by pertussis toxin. Moreover, this potentiation resulted from a cascade of events: activation (by calcium and protein kinase C) of a phospholipase A2 coupled to A1-adenosine receptors, release of arachidonic acid, which inhibited the reuptake of glutamate into astrocytes and finally additional activation of phospholipase C by externally accumulated glutamate through metabotropic receptors. The effects of 2-chloroadenosine and methoxamine were respectively mimicked by somatostatin and substance P while endothelins reproduced the combined effects of 2-chloroadenosine and methoxamine. Conditioned media from treated astrocytes enriched in glutamate stimulated phospholipase C in cultured striatal neurones. In addition, glutamate alone was also found to stimulate phospholipase A2 in astrocytes through receptors exhibiting a pharmacological profile distinct from metabotropic receptors coupled to phospholipase C and the glutamate response was potentiated by ATP. Moreover, the neuronal arachidonic acid production evoked by glutamate was potentiated by acetylcholine. Finally, the combined application of 2-chloroadenosine and methoxamine on striatal astrocytes reduced the permeability of gap junctions between astrocytes and this response was mimicked by arachidonic acid. Together, these results emphasized the contribution of astrocytes in the regulation of glutamatergic transmission.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验