Jones T D, Morris M D, Young R W
Health Sciences Research Division, Oak Ridge National Laboratory, TN 37831-6101.
Health Phys. 1994 Nov;67(5):495-508. doi: 10.1097/00004032-199411000-00005.
Traditionally, dose-response modeling has been on a strict experiment-by-experiment basis. Such an approach greatly restricts understanding of complex biological systems affected by numerous confounding factors that individually vary from experiment to experiment. In contrast, work described in this manuscript relies on a new analytical process (that considers both pooled and experiment-specific considerations) that was used to jointly analyze the bone marrow cell kinetics from a large data base on six species of test animals irradiated by protracted schedules of ionizing photon radiations. From this approach, we have modeled how the human LD50 may vary with dose protraction and how the dose rate efficiency or RBE factors for x rays, 137Cs, and 60Co change for irradiations given at constant rate over one minute, hour, day, week, and month.
传统上,剂量反应建模一直是基于严格的逐个实验进行的。这种方法极大地限制了对受众多混杂因素影响的复杂生物系统的理解,这些混杂因素在不同实验中各自有所不同。相比之下,本手稿中描述的工作依赖于一种新的分析过程(该过程同时考虑了汇总和特定实验的因素),该过程用于联合分析来自一个大型数据库的骨髓细胞动力学,该数据库涉及六种受长时间电离光子辐射照射的实验动物。通过这种方法,我们已经建立了人类半数致死剂量(LD50)如何随剂量延长而变化的模型,以及在一分钟、一小时、一天、一周和一个月内以恒定速率进行照射时,X射线、137Cs和60Co的剂量率效率或相对生物效应(RBE)因子如何变化的模型。