Suppr超能文献

小数量死亡率变化分析

Analysis of variations in mortality rates with small numbers.

作者信息

Flanders W D, Shipp C C, FitzGerald D M, Lin L S

机构信息

Georgia Medical Care Foundation, Atlanta.

出版信息

Health Serv Res. 1994 Oct;29(4):461-71.

Abstract

OBJECTIVE

We present a Monte Carlo technique to evaluate if observed mortality rates differ from model-predicted rates for situations when the number of deaths is small.

DATA SOURCES

We used Medicare hospital claims and model-predicted mortality rates from the Health Care Financing Administration (HCFA) for the 169 acute care hospitals in Georgia. The HCFA data provided model-predicted mortality rates at 30 days postadmission for 17 conditions and procedures of interest. The model-predicted rates calculated by HCFA were adjusted for patient factors, including demographic characteristics, principal diagnosis, and comorbidities.

STUDY DESIGN

We test the hypothesis that model-predicted 30-day mortality rates at the 169 hospitals differ significantly from the observed 30-day mortality rates. Our approach uses a test statistic that resembles a chi-square statistic, and Monte Carlo simulations to estimate the distribution of the test statistic under the null hypothesis of no differences between the observed and predicted rates. We illustrate the method using two conceptually similar simulation models. We use results of the simulations to estimate p-values and compare these results with p-values associated with the nominal chi-square distribution.

DATA EXTRACTION METHODS

We extracted 30-day observed and predicted mortality rates for Medicare beneficiaries for federal fiscal year 1990 for 17 conditions and procedures of interest.

PRINCIPAL FINDINGS

If the number of deaths in some hospitals is small, p-values calculated using the nominal chi-square distribution can be misleading, thus supporting the usefulness of our simulation method.

CONCLUSIONS

The Monte Carlo simulation is an appropriate approach to the analysis of hospital mortality or small area analysis for situations in which the number of deaths is small.

摘要

目的

我们提出一种蒙特卡罗技术,用于评估在死亡人数较少的情况下,观察到的死亡率与模型预测的死亡率是否存在差异。

数据来源

我们使用了医疗保险医院理赔数据以及来自医疗保健财务管理局(HCFA)的模型预测死亡率,数据涉及佐治亚州的169家急性护理医院。HCFA数据提供了17种感兴趣的病症和手术在入院后30天的模型预测死亡率。HCFA计算的模型预测率针对患者因素进行了调整,包括人口统计学特征、主要诊断和合并症。

研究设计

我们检验这样一个假设,即169家医院的模型预测30天死亡率与观察到的30天死亡率存在显著差异。我们的方法使用一种类似于卡方统计量的检验统计量,并通过蒙特卡罗模拟来估计在观察率和预测率无差异的原假设下该检验统计量的分布。我们使用两个概念上相似的模拟模型来说明该方法。我们利用模拟结果来估计p值,并将这些结果与与名义卡方分布相关的p值进行比较。

数据提取方法

我们提取了1990财年医疗保险受益人的17种感兴趣的病症和手术的30天观察死亡率和预测死亡率。

主要发现

如果某些医院的死亡人数较少,使用名义卡方分布计算的p值可能会产生误导,从而支持了我们模拟方法的实用性。

结论

对于死亡人数较少的情况,蒙特卡罗模拟是分析医院死亡率或小区域分析的一种合适方法。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验