Haft C R, Klausner R D, Taylor S I
Diabetes Branch, NIDDKD, National Institutes of Health, Bethesda, Maryland 20892-1770.
J Biol Chem. 1994 Oct 21;269(42):26286-94.
Dileucine motifs have been shown to be involved in trans Golgi sorting, lysosomal targeting, and internalization of a number of proteins. The insulin receptor contains four dileucine pairs in its cytoplasmic domain. To determine if these insulin receptor sequences can serve as lysosomal sorting sequences, chimeric molecules expressing the Tac antigen fused to each isolated insulin receptor motif were constructed. A chimera containing the juxtamembrane dileucine motif (EKITLL), which closely resembles the sequences originally identified in the gamma- and delta-chains of the T cell receptor (DKQTLL and EVQALL), was shown to sort to lysosomes by immunofluorescence microscopy, as did a chimera expressing the dileucine motif (GGKGLL) found in the tyrosine kinase domain. Chimeras expressing either a second tyrosine kinase domain sequence (HVVRLL) or the carboxyl-terminal sequence (EIVNLL) localized to both lysosomes and the plasma membrane. In contrast, chimeras expressing two other potential sorting signals found in the cytoplasmic tail of the insulin receptor (NARDII and KNGRIL) localized predominantly to the plasma membrane. Exclusively cell surface staining was also seen for a chimera expressing a mutant motif (EKITAA), where the leucine residues were mutated to alanines. When the alanine pair was introduced into the juxtamembrane domain of the intact insulin receptor and the mutant receptor expressed in NIH-3T3 cells, we found that the mutation did not impair insulin binding or receptor tyrosine kinase activity. However, the Ala-Ala mutant internalized insulin 5-fold slower than the wild-type receptor. Taken together, these findings suggest that the dileucine motif found in the juxtamembrane domain of the insulin receptor is involved in receptor internalization and that other insulin receptor sequences may mask the potential lysosomal targeting signals in the intact molecule.
双亮氨酸基序已被证明参与多种蛋白质的反式高尔基体分选、溶酶体靶向定位及内化过程。胰岛素受体在其胞质结构域含有四对双亮氨酸。为了确定这些胰岛素受体序列是否可作为溶酶体分选序列,构建了表达与每个分离出的胰岛素受体基序融合的Tac抗原的嵌合分子。含有近膜双亮氨酸基序(EKITLL)的嵌合体,其与最初在T细胞受体γ链和δ链中鉴定出的序列(DKQTLL和EVQALL)非常相似,通过免疫荧光显微镜观察发现其可分选至溶酶体,在酪氨酸激酶结构域中发现的双亮氨酸基序(GGKGLL)表达的嵌合体也是如此。表达第二个酪氨酸激酶结构域序列(HVVRLL)或羧基末端序列(EIVNLL)的嵌合体定位于溶酶体和质膜。相比之下,表达胰岛素受体胞质尾中发现的其他两个潜在分选信号(NARDII和KNGRIL)的嵌合体主要定位于质膜。表达突变基序(EKITAA)的嵌合体(其中亮氨酸残基突变为丙氨酸)也仅在细胞表面染色。当将丙氨酸对引入完整胰岛素受体的近膜结构域并在NIH-3T3细胞中表达突变受体时,我们发现该突变并不损害胰岛素结合或受体酪氨酸激酶活性。然而,丙氨酸-丙氨酸突变体内化胰岛素的速度比野生型受体慢5倍。综上所述,这些发现表明胰岛素受体近膜结构域中发现的双亮氨酸基序参与受体内化,并且其他胰岛素受体序列可能掩盖了完整分子中潜在的溶酶体靶向信号。