Schlichting I, Yang X J, Miles E W, Kim A Y, Anderson K S
Max-Planck-Institut für Medizinische Forschung, Abteilung Biophysik, Heidelberg, Federal Republic of Germany.
J Biol Chem. 1994 Oct 28;269(43):26591-3.
Substrate channeling is a process by which two sequential enzymes interact to transfer a metabolite (or intermediate) from one enzyme active site to the next without allowing free diffusion of the metabolite. Channeling is thought to play an important role in metabolic regulation and cellular modulation of enzymatic activities. Although there are numerous examples of sequential enzyme pairs in glycolysis and other biosynthetic pathways that are thought to exhibit channeling, this is as yet controversial. Tryptophan synthase is considered the best example for an enzyme displaying channeling behavior between subunits. Tryptophan synthase is an alpha 2 beta 2 tetrameric enzyme complex, which catalyzes the last two steps in the biosynthesis of L-tryptophan. The alpha subunit catalyzes the cleavage of indole-3-glycerol phosphate to indole and glyceraldehyde-3-phosphate; the beta subunit catalyzes the condensation of indole with serine to form tryptophan, in a reaction mediated by pyridoxal phosphate. The inability to trap free indole in the steady-state reaction and analysis of the kinetics of single turnover reactions have led to the postulate that indole may pass directly from the alpha to the beta site without diffusion through solution (Demoss, J. A. (1962) Biochim. Biophys. Acta 62, 279-293; Matchett, W. M. (1974) J. Biol. Chem. 249, 4041-4049). The crystal structure of tryptophan synthase from Salmonella typhimurium has provided additional support for substrate channeling by elucidating a 25-A hydrophobic tunnel connecting the two catalytic sites (Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., and Davies, D. R. (1988) J. Biol. Chem. 263, 17857-17871). The structure suggests that mutation of a residue lining the tunnel to a more bulky residue might impede or block the passage of indole during catalysis thus enabling detection of indole during a single enzyme turnover. A mutant of tryptophan synthase has been prepared in which one of the residues lining the tunnel, beta Cys-170, has been replaced with a bulkier tryptophan residue. Kinetic and structural analyses of the beta C170W mutant by rapid chemical quench methods and x-ray crystallographic analysis show both the transient formation of indole and the obstruction of the tunnel, thus providing direct evidence for the substrate channeling mechanism.
底物通道化是一个过程,通过该过程两种顺序作用的酶相互作用,将代谢物(或中间体)从一个酶活性位点转移到下一个,而不允许代谢物自由扩散。通道化被认为在代谢调节和酶活性的细胞调节中起重要作用。尽管在糖酵解和其他生物合成途径中有许多顺序作用的酶对被认为表现出通道化,但这一点仍存在争议。色氨酸合酶被认为是亚基间表现出通道化行为的酶的最佳例子。色氨酸合酶是一种α2β2四聚体酶复合物,催化L-色氨酸生物合成的最后两步。α亚基催化吲哚-3-甘油磷酸裂解为吲哚和3-磷酸甘油醛;β亚基催化吲哚与丝氨酸缩合形成色氨酸,该反应由磷酸吡哆醛介导。在稳态反应中无法捕获游离吲哚以及对单周转反应动力学的分析导致了这样一种假设,即吲哚可能直接从α位点传递到β位点,而不会通过溶液扩散(德莫斯,J.A.(1962年)《生物化学与生物物理学学报》62卷,279 - 293页;马切特,W.M.(1974年)《生物化学杂志》249卷,4041 - 4049页)。鼠伤寒沙门氏菌色氨酸合酶的晶体结构通过阐明一条连接两个催化位点的25埃长的疏水通道,为底物通道化提供了额外的支持(海德,C.C.、艾哈迈德,S.A.、帕德兰,E.A.、迈尔斯,E.W.和戴维斯,D.R.(1988年)《生物化学杂志》263卷,17857 - 17871页)。该结构表明,将通道内衬的一个残基突变为体积更大的残基可能会在催化过程中阻碍或阻断吲哚的通过,从而能够在单酶周转过程中检测到吲哚。已经制备了一种色氨酸合酶突变体,其中通道内衬的一个残基β - Cys - 170被一个体积更大的色氨酸残基取代。通过快速化学淬灭方法和X射线晶体学分析对βC170W突变体进行的动力学和结构分析表明,吲哚会短暂形成且通道被阻塞,从而为底物通道化机制提供了直接证据。