Michalska Karolina, Gale Jennifer, Joachimiak Grazyna, Chang Changsoo, Hatzos-Skintges Catherine, Nocek Boguslaw, Johnston Stephen E, Bigelow Lance, Bajrami Besnik, Jedrzejczak Robert P, Wellington Samantha, Hung Deborah T, Nag Partha P, Fisher Stewart L, Endres Michael, Joachimiak Andrzej
Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA.
Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
IUCrJ. 2019 May 29;6(Pt 4):649-664. doi: 10.1107/S2052252519005955. eCollection 2019 Jul 1.
Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from and serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and β (TrpB), functioning as a linear αββα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the β-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens , and , the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from , and have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.
色氨酸生物合成是细菌中研究最为深入的过程之一,其中来自[具体物种1]和[具体物种2]的酶作为模型系统。色氨酸合酶(TrpAB)催化植物、真菌和细菌中色氨酸生物合成的最后两步。这种依赖于磷酸吡哆醛(PLP)的酶由两条蛋白质链组成,α链(TrpA)和β链(TrpB),作为一个线性的αββα异源四聚体复合物发挥作用,包含两个TrpAB单元。该反应具有复杂的多步机制,导致L-丝氨酸的羟基被吲哚部分进行β取代。最近的研究表明,功能性的TrpAB是病原菌在巨噬细胞中存活以及逃避宿主防御所必需的。因此,TrpAB是一个有前景的药物研发靶点,因为它的直系同源物包括来自重要人类病原体[具体病原体1]、[具体病原体2]和[具体病原体3]的酶,它们分别是肺炎、军团病和兔热病的病原体。然而,这些生物体中TrpAB的具体生化和结构特性尚未得到研究。为了填补在理解TrpAB方面重要的系统发育空白,并揭示TrpAB直系同源物的独特特征以推动未来的药物研发工作,对来自[具体物种3]、[具体物种4]和[具体物种5]的TrpAB进行了表征。除了动力学性质和抑制剂敏感性数据外,还展示了使用X射线晶体学收集的结构信息。这些酶显示出显著的结构保守性,但同时在其催化位点和别构位点都表现出局部差异,这些差异可能导致观察到的催化和抑制剂结合方面的差异。这种功能上的差异可用于设计物种特异性的酶抑制剂。