Brichta A M, Peterson E H
Neurobiology Program, College of Arts and Sciences, College of Osteopathic Medicine, Ohio University, Athens 45701-2979.
J Comp Neurol. 1994 Jun 22;344(4):481-507. doi: 10.1002/cne.903440402.
Physiological studies in many vertebrates indicate that vestibular primary afferents are not a homogeneous population. Such data raise the question of what structural mechanisms underlie these physiological differences and what functional role is played by afferents of each type. We have begun to answer these questions by characterizing the architecture of 110 afferents innervating the posterior canal of Pseudemys scripta. We emphasize their spatial organization because experimental evidence suggests that afferent physiological properties exhibit significant spatial heterogeneity. The sensory surface of the posterior canal comprises paired, triangular hemicristae, which are innervated by two afferent types. Bouton afferents (66% of total afferents) are found over the entire sensory surface. They differ significantly in the shape and size of their collecting areas, number of boutons, soma size, and axon diameter; this morphological variation is systematically related to the afferent's spatial position. In addition, multivariate analyses suggest that bouton afferents may comprise two subtypes: alpha afferents have delicate processes and are found throughout the crista; beta afferents are more robust and are concentrated preferentially toward the canal center. Calyx-bearing afferents comprise two morphological subtypes: dimorphs (13% of total afferents) bear calyceal and bouton endings; calyceal afferents (21%) bear calyceal endings only. Both types occur exclusively in an elliptical region near the center of each hemicrista; their morphology varies with radial distance from the center of this elliptical region. Our data provide evidence that in Pseudemys: (1) the classical vestibular afferent types (bouton, calyx, dimorph) are structurally heterogeneous, and (2) their spatial sampling characteristics are highly structured and distinctive for each type. These spatial patterns may shed light on regional differences in physiological profiles of vestibular afferents, and they raise questions about the role of this spatial heterogeneity in signaling head movement.
许多脊椎动物的生理学研究表明,前庭初级传入神经并非同质化群体。这些数据引发了这样的问题:这些生理差异背后的结构机制是什么,以及每种类型的传入神经发挥着怎样的功能作用。我们通过描述110条支配伪麝香龟后管的传入神经的结构,开始回答这些问题。我们强调它们的空间组织,因为实验证据表明传入神经的生理特性呈现出显著的空间异质性。后管的感觉表面由成对的三角形半规管嵴组成,由两种传入神经类型支配。终扣传入神经(占传入神经总数的66%)分布在整个感觉表面。它们在收集区域的形状和大小、终扣数量、胞体大小和轴突直径方面存在显著差异;这种形态学变异与传入神经的空间位置系统相关。此外,多变量分析表明终扣传入神经可能包括两个亚型:α传入神经具有纤细的突起,分布在整个嵴上;β传入神经更粗壮,优先集中在管中心附近。带杯状终末的传入神经包括两种形态学亚型:双形态传入神经(占传入神经总数的13%)带有杯状终末和终扣终末;杯状传入神经(21%)仅带有杯状终末。这两种类型仅出现在每个半规管嵴中心附近的椭圆形区域;它们的形态随距该椭圆形区域中心的径向距离而变化。我们的数据提供了证据,表明在伪麝香龟中:(1)经典的前庭传入神经类型(终扣、杯状、双形态)在结构上是异质的,(2)它们的空间采样特征高度结构化且每种类型都有独特之处。这些空间模式可能有助于揭示前庭传入神经生理特征的区域差异,并且引发了关于这种空间异质性在头部运动信号传递中的作用的问题。