Suppr超能文献

利用自动机网络的能量最小化方法,根据给定的主链几何结构预测序列和侧链构象。

Energy minimization method using automata network for sequence and side-chain conformation prediction from given backbone geometry.

作者信息

Kono H, Doi J

机构信息

Department of Biotechnology, University of Tokyo, Japan.

出版信息

Proteins. 1994 Jul;19(3):244-55. doi: 10.1002/prot.340190308.

Abstract

Globular proteins have high packing densities as a result of residue side chains in the core achieving a tight, complementary packing. The internal packing is considered the main determinant of native protein structure. From that point of view, we present here a method of energy minimization using an automata network to predict a set of amino acid sequences and their side-chain conformations from a desired backbone geometry for de novo design of proteins. Using discrete side-chain conformations, that is, rotamers, the sequence generation problem from a given backbone geometry becomes one of combinatorial problems. We focused on the residues composing the interior core region and predicted a set of amino acid sequences and their side-chain conformations only from a given backbone geometry. The kinds of residues were restricted to six hydrophobic amino acids (Ala, Ile, Met, Leu, Phe, and Val) because the core regions are almost always composed of hydrophobic residues. The obtained sequences were well packed as was the native sequence. The method can be used for automated sequence generation in the de novo design of proteins.

摘要

由于核心区域的残基侧链实现了紧密、互补的堆积,球状蛋白质具有较高的堆积密度。内部堆积被认为是天然蛋白质结构的主要决定因素。从这个角度出发,我们在此提出一种使用自动机网络进行能量最小化的方法,用于从所需的主链几何结构预测一组氨基酸序列及其侧链构象,以进行蛋白质的从头设计。使用离散的侧链构象,即旋转异构体,从给定的主链几何结构生成序列的问题就变成了一个组合问题。我们专注于构成内部核心区域的残基,仅从给定的主链几何结构预测一组氨基酸序列及其侧链构象。残基种类限于六种疏水氨基酸(丙氨酸、异亮氨酸、甲硫氨酸、亮氨酸、苯丙氨酸和缬氨酸),因为核心区域几乎总是由疏水残基组成。获得的序列与天然序列一样堆积良好。该方法可用于蛋白质从头设计中的自动序列生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验