Suppr超能文献

通过气体交换测定无氧阈:生化考量、方法及生理效应

Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects.

作者信息

Wasserman K, Stringer W W, Casaburi R, Koike A, Cooper C B

机构信息

Department of Medicine, Harbor-UCLA Medical Center, Torrance.

出版信息

Z Kardiol. 1994;83 Suppl 3:1-12.

PMID:7941654
Abstract

This paper explains the physiological and biochemical basis of the anaerobic threshold (AT), achieved during physical exercise. The lactate concentration is approximately the same at rest in relatively fit adults, in normal sedentary subjects in adult patients with heart disease. But during exercise, the increase of lactate is inversely related to the physical fitness of the individual. During incremental work, the lactate concentration increases initially very little until a distinct metabolic rate (VO2 AT) is reached at which lactate starts to increase steeply (anaerobic threshold/AT; VO2 AT). Above the anaerobic threshold, accelerated glycolysis increases muscle lactic acidosis. This acidosis is buffered primarily by bicarbonate. The bicarbonate-derived CO2 causes an increased alveolar CO2 output relative to O2 uptake. Oxygen uptake is increased virtually linearly with work rate in healthy subjects with a slope of approximately 10 ml O2/min/Watt. VCO2 starts to increase more steeply in the mid-work-rate range after an initial linear behavior. This steepening is caused by an increased CO2 production from the HCO3-buffering of lactic acid for the range of work rates above the AT. Below the AT, the slope of increase in VCO2 is 1 or slightly less, averaging 0.95. Above the AT, it is greater than 1. The submaximal exercise protocol for the determination of AT includes a period of 2-3 min of unloaded cycling, a ramp program with x Watt increase/minute and a recovery period of 2 min. X is the rate of work rate increase per min, so that the incremental period of the exercise test lasts 8-10 min, stressing the patient for only a short time. The anaerobic threshold can be determined during the ramp program using the following four parameters: 1) steeper increase of VCO2 as compared to VO2 (V-slope-method); 2) respiratory exchange ratio = 0.95; 3) PETO2 increase; 4) VE/VO2 increase. The V-slope-method can be successfully applied, not only in healthy volunteers, but also in patients suffering from cardiac and/or pulmonary (breathing abnormalities) diseases. The so far published data show that the anaerobic threshold in healthy people and patients is a highly reproducible, accurately measurable, securely achievable parameter for the non-invasive evaluation of the individual cardiopulmonary exercise capacity.

摘要

本文解释了体育锻炼过程中达到的无氧阈(AT)的生理和生化基础。在相对健康的成年人、正常久坐的成年人以及成年心脏病患者休息时,乳酸浓度大致相同。但在运动过程中,乳酸的增加与个体的体能呈负相关。在递增运动中,乳酸浓度最初增加很少,直到达到一个特定的代谢率(VO2 AT),此时乳酸开始急剧增加(无氧阈/AT;VO2 AT)。高于无氧阈时,糖酵解加速会增加肌肉乳酸酸中毒。这种酸中毒主要由碳酸氢盐缓冲。碳酸氢盐衍生的二氧化碳导致相对于氧气摄取,肺泡二氧化碳输出增加。在健康受试者中,氧气摄取量几乎与工作负荷呈线性增加,斜率约为10 ml O2/min/瓦特。在初始呈线性变化后,VCO2在工作负荷范围的中间部分开始更急剧地增加。这种急剧增加是由于在高于AT的工作负荷范围内,乳酸的HCO3缓冲导致二氧化碳产生增加。在AT以下,VCO2增加的斜率为1或略小于1,平均为0.95。在AT以上,斜率大于1。用于确定AT的次极量运动方案包括2 - 3分钟的无负荷骑行期、每分钟增加x瓦特的递增程序以及2分钟的恢复期。X是每分钟工作负荷增加的速率,因此运动测试的递增期持续8 - 10分钟,仅在短时间内使患者承受压力。可以在递增程序期间使用以下四个参数确定无氧阈:1)与VO2相比,VCO2更急剧增加(V斜率法);(2)呼吸交换率 = 0.95;(3)PETO2增加;(4)VE/VO2增加。V斜率法不仅可以成功应用于健康志愿者,也可应用于患有心脏和/或肺部(呼吸异常)疾病的患者。迄今为止发表的数据表明,健康人和患者的无氧阈是用于个体心肺运动能力无创评估的高度可重复、准确可测量且可靠可实现的参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验