Kozlov Alexander G, Lohman Timothy M
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.
Biochemistry. 2006 Apr 25;45(16):5190-205. doi: 10.1021/bi052543x.
We have previously shown that the linkage of temperature-dependent protonation and DNA base unstacking equilibria contribute significantly to both the negative enthalpy change (DeltaH(obs)) and the negative heat capacity change (DeltaC(p,obs)) for Escherichia coli SSB homotetramer binding to single-stranded (ss) DNA. Using isothermal titration calorimetry we have now examined DeltaH(obs) over a much wider temperature range (5-60 degrees C) and as a function of monovalent salt concentration and type for SSB binding to (dT)(70) under solution conditions that favor the fully wrapped (SSB)(65) complex (monovalent salt concentration >or=0.20 M). Over this wider temperature range we observe a strongly temperature-dependent DeltaC(p,obs). The DeltaH(obs) decreases as temperature increases from 5 to 35 degrees C (DeltaC(p,obs) <0) but then increases at higher temperatures up to 60 degrees C (DeltaC(p,obs) >0). Both salt concentration and anion type have large effects on DeltaH(obs) and DeltaC(p,obs). These observations can be explained by a model in which SSB protein can undergo a temperature- and salt-dependent conformational transition (below 35 degrees C), the midpoint of which shifts to higher temperature (above 35 degrees C) for SSB bound to ssDNA. Anions bind weakly to free SSB, with the preference Br(-) > Cl(-) > F(-), and these anions are then released upon binding ssDNA, affecting both DeltaH(obs) and DeltaC(p,obs). We conclude that the experimentally measured values of DeltaC(p,obs) for SSB binding to ssDNA cannot be explained solely on the basis of changes in accessible surface area (ASA) upon complex formation but rather result from a series of temperature-dependent equilibria (ion binding, protonation, and protein conformational changes) that are coupled to the SSB-ssDNA binding equilibrium. This is also likely true for many other protein-nucleic acid interactions.
我们之前已经表明,温度依赖性质子化与DNA碱基解堆积平衡之间的联系对大肠杆菌单链结合蛋白(SSB)同四聚体与单链(ss)DNA结合的负焓变(ΔH(obs))和负热容变化(ΔC(p,obs))都有显著贡献。使用等温滴定量热法,我们现在在更宽的温度范围(5 - 60摄氏度)内研究了ΔH(obs),并考察了在有利于形成完全包裹的(SSB)(65)复合物的溶液条件下(单价盐浓度≥0.20 M),单价盐浓度和类型对SSB与(dT)(70)结合的影响。在这个更宽的温度范围内,我们观察到ΔC(p,obs)强烈依赖于温度。随着温度从5摄氏度升高到35摄氏度,ΔH(obs)减小(ΔC(p,obs) < 0),但在更高温度直至60摄氏度时增加(ΔC(p,obs) > 0)。盐浓度和阴离子类型对ΔH(obs)和ΔC(p,obs)都有很大影响。这些观察结果可以用一个模型来解释,即SSB蛋白可以经历一个依赖于温度和盐的构象转变(低于35摄氏度),对于结合到ssDNA的SSB,其转变中点会移向更高温度(高于35摄氏度)。阴离子与游离的SSB弱结合,偏好顺序为Br(-) > Cl(-) > F(-),并且这些阴离子在结合ssDNA时会释放出来,从而影响ΔH(obs)和ΔC(p,obs)。我们得出结论,实验测量的SSB与ssDNA结合的ΔC(p,obs)值不能仅基于复合物形成时可及表面积(ASA)的变化来解释,而是由一系列与SSB - ssDNA结合平衡耦合的温度依赖性平衡(离子结合、质子化和蛋白质构象变化)导致的。这对于许多其他蛋白质 - 核酸相互作用可能也是如此。