Suppr超能文献

使用期望最大化算法评估的突触传递统计模型。

Statistical models of synaptic transmission evaluated using the expectation-maximization algorithm.

作者信息

Stricker C, Redman S

机构信息

Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra.

出版信息

Biophys J. 1994 Aug;67(2):656-70. doi: 10.1016/S0006-3495(94)80514-4.

Abstract

Amplitude fluctuations of evoked synaptic responses can be used to extract information on the probabilities of release at the active sites, and on the amplitudes of the synaptic responses generated by transmission at each active site. The parameters that describe this process must be obtained from an incomplete data set represented by the probability density of the evoked synaptic response. In this paper, the equations required to calculate these parameters using the Expectation-Maximization algorithm and the maximum likelihood criterion have been derived for a variety of statistical models of synaptic transmission. These models are ones where the probabilities associated with the different discrete amplitudes in the evoked responses are a) unconstrained, b) binomial, and c) compound binomial. The discrete amplitudes may be separated by equal (quantal) or unequal amounts, with or without quantal variance. Alternative models have been considered where the variance associated with the discrete amplitudes is sufficiently large such that no quantal amplitudes can be detected. These models involve the sum of a normal distribution (to represent failures) and a unimodal distribution (to represent the evoked responses). The implementation of the algorithm is described in each case, and its accuracy and convergence have been demonstrated.

摘要

诱发突触反应的幅度波动可用于提取有关活性位点释放概率以及每个活性位点传递产生的突触反应幅度的信息。描述此过程的参数必须从由诱发突触反应的概率密度表示的不完整数据集中获得。在本文中,针对多种突触传递统计模型,推导了使用期望最大化算法和最大似然准则来计算这些参数所需的方程。这些模型包括:a)诱发反应中与不同离散幅度相关的概率无约束的模型;b)二项式模型;c)复合二项式模型。离散幅度可以以相等(量子化)或不相等的量分隔,有无量子方差均可。还考虑了替代模型,其中与离散幅度相关的方差足够大,以至于无法检测到量子幅度。这些模型涉及正态分布(代表失败)和单峰分布(代表诱发反应)的总和。每种情况下都描述了算法的实现,并证明了其准确性和收敛性。

相似文献

5
Applications of the expectation-maximization algorithm to quantal analysis of postsynaptic potentials.
J Neurosci Methods. 1989 Dec;30(3):231-45. doi: 10.1016/0165-0270(89)90134-9.
9
Quantal analysis based on density estimation.基于密度估计的量子分析。
J Neurosci Methods. 2003 Dec 15;130(2):159-71. doi: 10.1016/j.jneumeth.2003.09.021.

引用本文的文献

5
Stochastic modeling of facilitated neurosecretion.易化神经分泌的随机建模
J Comput Neurosci. 2000 Mar-Apr;8(2):113-26. doi: 10.1023/a:1008917130947.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验