Suppr超能文献

从贝叶斯网络生成解释和教程问题。

Generating explanations and tutorial problems from Bayesian networks.

作者信息

Haddawy P, Jacobson J, Kahn C E

机构信息

Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee.

出版信息

Proc Annu Symp Comput Appl Med Care. 1994:770-4.

Abstract

We present a system that generates explanations and tutorial problems from the probabilistic information contained in Bayesian belief networks. BANTER is a tool for high-level interaction with any Bayesian network whose nodes can be classified as hypotheses, observations, and diagnostic procedures. Users need no knowledge of Bayesian networks, only familiarity with the particular domain and an elementary understanding of probability. Users can query the knowledge base, identify optimal diagnostic procedures, and request explanations. We describe BANTER's algorithms and illustrate its application to an existing medical model.

摘要

我们提出了一种系统,该系统可根据贝叶斯信念网络中包含的概率信息生成解释和教程问题。BANTER是一种用于与任何贝叶斯网络进行高级交互的工具,其节点可分为假设、观察结果和诊断程序。用户无需了解贝叶斯网络,只需熟悉特定领域并对概率有基本的理解即可。用户可以查询知识库、确定最佳诊断程序并请求解释。我们描述了BANTER的算法,并说明了其在现有医学模型中的应用。

相似文献

2
BANTER: a Bayesian network tutoring shell.BANTER:一种贝叶斯网络辅导外壳。
Artif Intell Med. 1997 Jun;10(2):177-200. doi: 10.1016/s0933-3657(96)00374-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验