Shwe M A, Middleton B, Heckerman D E, Henrion M, Horvitz E J, Lehmann H P, Cooper G F
Section on Medical Informatics, Stanford University, CA.
Methods Inf Med. 1991 Oct;30(4):241-55.
In Part I of this two-part series, we report the design of a probabilistic reformulation of the Quick Medical Reference (QMR) diagnostic decision-support tool. We describe a two-level multiply connected belief-network representation of the QMR knowledge base of internal medicine. In the belief-network representation of the QMR knowledge base, we use probabilities derived from the QMR disease profiles, from QMR imports of findings, and from National Center for Health Statistics hospital-discharge statistics. We use a stochastic simulation algorithm for inference on the belief network. This algorithm computes estimates of the posterior marginal probabilities of diseases given a set of findings. In Part II of the series, we compare the performance of QMR to that of our probabilistic system on cases abstracted from continuing medical education materials from Scientific American Medicine. In addition, we analyze empirically several components of the probabilistic model and simulation algorithm.
在这个两部分系列的第一部分中,我们报告了快速医学参考(QMR)诊断决策支持工具的概率重新表述设计。我们描述了内科QMR知识库的两级多重连接信念网络表示。在QMR知识库的信念网络表示中,我们使用从QMR疾病概况、QMR发现输入以及国家卫生统计中心医院出院统计中得出的概率。我们使用一种随机模拟算法对信念网络进行推理。该算法计算给定一组发现时疾病后验边缘概率的估计值。在该系列的第二部分中,我们将QMR的性能与我们的概率系统在从《科学美国人医学》继续医学教育材料中提取的案例上的性能进行比较。此外,我们对概率模型和模拟算法的几个组成部分进行实证分析。