Suppr超能文献

体感皮层隔离区内的微柱组织:II. 新兴功能特性。

Minicolumnar organization within somatosensory cortical segregates: II. Emergent functional properties.

作者信息

Favorov O V, Kelly D G

机构信息

Department of Biomedical Engineering, University of North Carolina at Chapel Hill 27599.

出版信息

Cereb Cortex. 1994 Jul-Aug;4(4):428-42. doi: 10.1093/cercor/4.4.428.

Abstract

In this article we describe some functional properties of the model of a somatosensory cortical macrocolumn--the segregate--described in the preceding companion article. These functional properties emerged in the model network in the course of stimulus-driven self-organization of its afferent connections under control of short-range inhibitory and longer-range excitatory lateral interactions among its minicolumns. In general, self-organization leads the model network to develop complex, nonlinear functional properties, and makes its neurons sensitive to the shape and temporal features of peripheral stimuli. The properties acquired reproduce some of the known properties of somatosensory and visual cortical networks. In particular, it is shown that, even though the network is exposed only to stationary point stimuli during self-organization, neurons in the model still acquire the ability to discriminate the direction of a moving stimulus, as well as the orientation of a stationary bar stimulus. Different stimulus directions and orientations are represented by different neurons in the model network, and the maps of neurons having these preferences have many properties in common with real cortical maps. In addition, we demonstrate the model network's ability to discriminate among spatially complex stimuli, such as letters of the alphabet. The parallels between the emergent structural and functional properties of the model network and the properties of sensory neocortex suggest that the model captures some of the basic mechanisms by which sensory cortical modules develop and maintain their elegantly detailed and appreciable information-processing capabilities.

摘要

在本文中,我们描述了在前一篇相关文章中所介绍的体感皮质大柱模型——分离柱的一些功能特性。这些功能特性在模型网络中,是在其各微小柱之间短程抑制性和长程兴奋性侧向相互作用的控制下,通过刺激驱动的传入连接自组织过程而出现的。一般来说,自组织使模型网络发展出复杂的非线性功能特性,并使其神经元对外周刺激的形状和时间特征敏感。所获得的特性重现了体感和视觉皮质网络的一些已知特性。特别是,研究表明,尽管在自组织过程中网络仅暴露于静止的点刺激,但模型中的神经元仍获得了辨别移动刺激方向以及静止条形刺激方向的能力。模型网络中不同的神经元代表不同的刺激方向和方位,并且具有这些偏好的神经元图谱与真实的皮质图谱有许多共同特性。此外,我们展示了模型网络辨别空间复杂刺激(如字母表中的字母)的能力。模型网络出现的结构和功能特性与感觉新皮质的特性之间的相似之处表明,该模型捕捉到了感觉皮质模块发展并维持其精细详细且可观的信息处理能力的一些基本机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验