Mauromoustakos A, McNew R W
University of Arkansas, Agricultural Statistics Laboratory, Fayetteville 72701.
J Biopharm Stat. 1994 Jul;4(2):189-98. doi: 10.1080/10543409408835082.
The analysis of binomial data that exhibit overdispersion in a randomized complete block design is investigated. More specifically, the asymptotic distribution of the test statistic for the treatment effects in the presence of overdispersion and random effects is considered. A Monte Carlo simulation attempts to quantify the error in the approximation by the F-distribution to the distribution of the test statistic given by many popular statistics packages including SAS. The influence of different parameter values (i.e., number of treatments, number of observations per cell, degree of overdispersion, etc.) on the goodness of the approximations is evaluated. General recommendations are given for practical analysis of binomial data.
研究了在随机完全区组设计中呈现过度离散的二项式数据的分析。更具体地说,考虑了在存在过度离散和随机效应的情况下,处理效应检验统计量的渐近分布。蒙特卡罗模拟试图量化许多流行统计软件包(包括SAS)给出的F分布对检验统计量分布近似的误差。评估了不同参数值(即处理数、每个单元格的观测数、过度离散程度等)对近似优度的影响。给出了二项式数据实际分析的一般建议。