Suppr超能文献

Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity.

作者信息

O'Shea D, Davis S N, Kim R B, Wilkinson G R

机构信息

Department of Pharmacology, Vanderbilt University School of Medicine.

出版信息

Clin Pharmacol Ther. 1994 Oct;56(4):359-67. doi: 10.1038/clpt.1994.150.

Abstract

BACKGROUND AND OBJECTIVES

The hepatic 6-hydroxylation of chlorzoxazone in vitro is mediated primarily by CYP2E1, and measurement of this metabolic pathway may provide an in vivo probe of the enzyme. In animals, such as the rat, levels of CYP2E1 are induced by both fasting and obesity. This study investigated whether these two physiologic factors are determinants of the metabolism and disposition of chlorzoxazone in humans.

METHODS

The plasma concentration-time profiles of chlorzoxazone and its 6-hydroxy metabolite were determined after oral administration of parent drug (250 mg). The urinary excretion of the metabolite was also determined. In one study, the disposition profiles were obtained in six healthy white men, first after an overnight fast, and on a separate occasion after a 38-hour fast. The second study investigated the disposition of chlorzoxazone in nine obese women and in nine age-matched women.

RESULTS

Prolonged fasting produced a significant increase in circulating ketone bodies. This was associated with a reduction in the oral clearance of chlorzoxazone (mean +/- SD, 5.79 +/- 1.04 to 3.69 +/- 1.54 ml.min-1.kg-1; p < 0.03). The 0- to 24-hour urinary recovery of the 6-hydroxy metabolite was extensive (50% to 80%), and the reduced clearance reflected a lower 6-hydroxylating ability after fasting. The elimination half-life of the drug was increased by a similar extent to clearance (1.00 +/- 0.09 versus 1.50 +/- 0.42 hours; p < 0.004), whereas its apparent volume of distribution was unaffected by fasting. By contrast, obesity resulted in significant increases in the oral clearance and distribution of chlorzoxazone on both an absolute and weight-normalized basis; for example, 4.15 +/- 0.81 versus 6.23 +/- 1.72 ml.min-1.kg-1 and 0.50 +/- 0.28 versus 0.82 +/- 0.19 L.kg-1. Half-life of elimination was similar in both groups of subjects. Estimation of the fractional clearance of 6-hydroxychlorzoxazone showed that obesity increased this parameter to a similar extent as oral clearance. The difference in the oral clearance and 6-hydroxylating ability of nonobese men and women was also statistically different.

CONCLUSIONS

A discordancy was observed between the reported effect of fasting in rodents and that observed in humans. This may reflect an interspecies difference in CYP2E1 regulation or, more likely, destruction of the enzyme by lipid peroxidation resulting from the prolonged period of fasting. However, serious to morbid obesity in humans is associated with increased 6-hydroxylation of chlorzoxazone, consistent with induction of CYP2E1. Accordingly, such individuals may be at increased risk of CYP2E1-mediated toxicities and adverse effects caused by the formation of CYP2E1-mediated metabolites of environmental agents. In addition, the efficacy of an active drug that is a CYP2E1 substrate may be reduced in obese patients.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验