Suppr超能文献

Drosophila TFIIA directs cooperative DNA binding with TBP and mediates transcriptional activation.

作者信息

Yokomori K, Zeidler M P, Chen J L, Verrijzer C P, Mlodzik M, Tjian R

机构信息

Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202.

出版信息

Genes Dev. 1994 Oct 1;8(19):2313-23. doi: 10.1101/gad.8.19.2313.

Abstract

Drosophila transcription factor IIA (TFIIA) is composed of three subunits (30, 20, and 14 kD) that function during initiation of transcription. We reported previously the characterization of cDNAs that encode a precursor (dTFIIA-L) of the Drosophila TFIIA 30- and 20-kD subunits. In the absence of the smallest subunit, dTFIIA-S (14 kD), the unprocessed large subunit failed to exhibit any detectable promoter binding or transcriptional activity. Here, we report the molecular cloning and expression of dTFIIA-S, which has allowed the assembly of holo-dTFIIA (dTFIIA-L/S). Subunit interaction studies indicate that dTFIIA-S binds to an amino-terminal domain of dTFIIA-L, which likely corresponds to the endogenous 30-kD processed species. In addition, both dTFIIA-S and the carboxy-terminal domain of dTFIIA-L, which corresponds to the 20-kD species, independently interact weakly with the TATA-binding protein (TBP). In contrast, the holo-dTFIIA (L/S) binds TBP with high affinity. The dTFIIA-L/S complex also binds cooperatively with TBP to TATA box DNA sequences, generating an extended DNase footprint pattern. The reconstituted holo-dTFIIA is able to stimulate basal transcription of several core promoter templates. Interestingly, dTFIIA-L/S is also able to significantly enhance transcriptional activation by upstream transcription factors including Sp1, VP16, and NTF-1. These results suggest that dTFIIA is a multifunctional transcription factor capable of influencing DNA binding as well as interactions with the basal machinery, thereby enhancing activator-dependent transcription.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验